Checklist for Exam 2 (2018)

Chapter 3. Formulas, Equations and Moles

I recognize different ways molecules can be represented, including the ball-and stick model, the
formula, the pressed-together-spheres model, and the atomic symbol and line model (Section
3.1)
I can write and balance chemical equations. I use the link method to help balance harder
equations. (Section 3.2)
I can write an equation from the words for formulas. (Section 3.2 and Chapter 2 Nomenclature)
I can calculate the molar mass of a compound. (Section 3.3)
I can convert mass to moles and moles to mass for any substance. (Section 3.3)
Go Moles! I can calculate the number of moles of a reagent needed to react completely with a
given number of moles of another reagent. I can do the same starting with masses instead of
moles. (mass of A \rightarrow moles of A \rightarrow moles of B \rightarrow mass of B) (Section 3.3)
I can calculate the theoretical yield of a product given the mass or moles of a reactant. I know that
theoretical yield can be expressed in either moles or grams. (Section 3.3)
I know the formula for percent yield. I can calculate percent yield given theoretical yield and
actual yield, or given percent yield and theoretical yield, I can calculate actual yield. (Of course,
usually, I will have to calculate theoretical yield when needed.) (Section 3.4)
I can determine the limiting reagent. To do so, I must <i>Go Moles!</i> and then divide each by the
coefficient and compare; the smaller number points to the LR. (Section 3.5)
Once I've determined the limiting reagent, I can calculate how much (in moles or mass) of the
other reagent is left over. This is like a theoretical yield calculation. (Section 3.5)
I can determine the percent composition and empirical formula of a compound. (Section 3.6)
I can use combustion analysis data to obtain the empirical formula of a compound containing
carbon, hydrogen, and one other element. (Section 3.7)
I can use the empirical formula and molar mass (by mass spectroscopy, for example) to
determine the molecular formula of a compound. (Section 3.8)

Chapter 4. Reactions in Aqueous Solutions

I know the definition of the concentration unit molarity (molar concentration = $moles_{solute}/V_{sol'n}$).
This formula is often written as $\mathbf{M} = \mathbf{n/V}$. (Section 4.1)
When the concentration and volume are known, I can calculate moles by rearranging the
equation to give $\mathbf{n} = \mathbf{MV}$. (Section 4.1)
I can do calculations involving dilutions using $M_{conc}V_{conc}=M_{dil}V_{dil}$. (Section 4.2)
I can classify reactions by inspection as precipitation, acid-base neutralization, or oxidation-
reduction, commonly called <i>redox</i> . (Section 4.4)

	I know that all ionic solids that dissolve dissociate 100% into ions and are thus strong electrolytes.	
	lonic solids that do not dissolve are non-electrolytes. (Section 4.3)	
	I know that covalent molecular compounds are generally non-electrolytes. (So far we can't	
	predict if they dissolve in water or not.) (Section 4.3)	
	I can sketch what species is/are present in a beaker of an aqueous solution. (Section 4.3)	
	I can write and balance chemical equations for precipitation reactions and acid-base reactions. I	
	can then go on to write the ionic equation and the net ionic equation for these reactions. (Section	
	4.5)	
	I know the Solubility Rules and can apply them to predict whether or not an ionic solid is soluble	
	in water or not. (Section 4.6)	
	I can use the Solubility Rules to predict if two aqueous solutions, when mixed, would produce a	
	precipitate — and I can write the formula for the precipitate. (Section 4.6)	
	I can use the Solubility Rules to suggest how an insoluble salt may be prepared. (Section 4.6)	
	I know that acids are either strong or weak. I can identify an acid from its formula and can predict	
	if it's strong or weak. Strong acids are strong electrolytes and weak acids are weak electrolytes.	
	(Section 4.7)	
	When both reagents are in solution, I must use n = MV for each one because I must work all	
	stoichiometry problems in moles. (Sections 4.8 and 4.9)	
	I can determine the volume of one reactant needed to react with a given volume of a second	
	reactant. (Sections 4.8 and 4.9)	
	Compared philles	
General skills:		
	I know the ion flashcards and how to name ionic substances and acids. (Example problem:	
	"What mass of ammonium phosphate is needed to")	
	Given a formula, I can classify compounds as ionic, covalent-molecular or acid.	
	Given the name of an ionic or covalent-molecular compound or acid, I can write its formula.	
	(Chapter 2), and visa versa (formula → name for ionics, covalent-moleculars and acids)	
	I can do the "picture problems" — usually best done by rendering them into word problems.	
	I can perform all of the calculations and problems we've seen on the in-class daily homework.	
	I can answer questions about the demonstrations we have seen in class.	
	I can answer questions about the demonstrations we have seen in class.	