Exam 5 Chm 203 (Dr Mattson) 5 December 201	8 Name:			
Academic Integrity Pledge: In keeping with Creighton University's ideals and with Academic Integrity Code, I pledge that this work is my own and that I have neither give nor received inappropriate assistance in preparing it.	th the en (1 point bonus for completing 1. signature, 2. printed name and 3. your correct chemistry student number)			
Signature:	Weite Levikly. The usual instructions and			
Instructions: Show all work whenever a calculation box is provided!				
1. (3 pts) Given that 2.54 cm is exactly 1 inch by definition, what is the pressure in atm on a day when the pressure	R = 0.0821 L atm mol ⁻¹ K ⁻¹ = 8.314 J mol ⁻¹ K ⁻¹			
is 29.79 inches of mercury?	1.000 atm = 760 mmHg = 101.325 kPa			
See information in yellow box. Show your work for full credit.	$u_A/u_B = (MM_B/MM_A)^{1/2}$ $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$			
	 An experiment often used in general chemistry labs (not ours) leads to an estimation of molar mass. 			
Answer with units:	6a. (3 pts) Starting with the ideal gas law, derive a formula			
 2. (3 pts) What is the pressure in kPa inside a manometer if the mercury is shifted 11.5 cm higher towards the side of the arm open to the atmosphere and given the atmospheric pressure is 704 mmHg? See information in yellow box. Show your work for full credit. 	for MM, showing your work and in the format MM = Show your work for full credit.			
	Answer: MM =			
Answer with units:	6b. (3 pts) Given 1.322 g of an unknown gas occupies 954			
3. (4 pts) Proportional relationships. How does	mL at 715 mmHg and 93 °C. What is its molar mass?			
P change if V is raised at constant T and n? Circle: ↑ ↓	See information in yellow box. Show your work for full credit.			
P change if T is raised at constant V and n? Circle:				
V change if T is lowered at constant P and n? Circle 1				
density change if P is raised at constant T? Circle: 1				
	A now or with unite:			
4. (4 pts) How many liters are in a m ³ ? Derive this using	Answer with units:			
the relationships between m and cm and cm ³ , mL and L. Show your work for full credit.	7. (4 pts) If a gas has a density of 1.55 g/L at 300 K and 99.4 kPa. What is its density at 400 K and 107.0 kPa?			
Show your work to full creat.	Show your work for full credit.			
Answer with units:				
5a. (4 pts) Our classroom has a volume of ~920 m ³ . How many moles of gas are present at 300 K and 735 mmHg? See information in yellow box. Show your work for full credit.	Answer with units:			
	8. (4 pts) What is the molar mass of a gas that effuses 27% faster than carbon dioxide under identical conditions?			
	Equation provided in yellow box. Show your work for full credit.			
Answer with units:				
5b. (4 pts) Given that for air the mole fraction of oxygen is 0.21, what is the partial pressure of nitrogen in the room? Show your work for full credit.				
Answer with units:	Answer with units:			
	9. (6 pts) Predict the signs of ΔH and ΔS for each of these			
 5c. (4 pts) If the room is cooled to 17 °C and the pressure decreases to 705 mmHg. How many moles of gas are now in the room? Gases can enter/leave under the door. Show your work for full credit. 	processes pertaining to a holiday candle. Paraffin (candle wax) is a mixture of hydrocarbons, the smallest of which is $C_{16}H_{34}$. Circle either <0 or >0 for each box.			
	ΔS ΔΗ			
	a. Combustion of paraffin< 0 or > 0< 0 or > 0			
	b. Melting candle wax < 0 or > 0 < 0 or > 0			
	c. Candle making (from liquid) < 0 or > 0 < 0 or > 0			
Answer with units:				

9d. (3 pts) For which of these would ΔG always be spontaneous? Circle one or more: 9a 9b 9c None

10. (4 pts) Which of these is entropy-favored? Circle four!

- **Yes No** $H_2O(I) \rightarrow H_2O(s)$ **Yes No** $N_2(I) \rightarrow N_2(g)$ **Yes No** $SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(g)$ **Yes No** $C_5H_{12}(I) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$
- 11. (4 pts) Circle the member of each pair of liquids with the highest surface tension and viscosity.

11a. C₆H₁₄ or C₅H₁₁OH 11b. C₅H₁₂ or C₁₄H₃₀

11c. C₂H₄(OH)₂ or C₂H₅OH 11d. C₂Cl₆ or CCl₄

12. Benzene, C_6H_6 , is a liquid that freezes at +5.5 ^oC and boils at +80.1 °C. A sample of C₆H₆ stored in an ice-

water bath was placed in a large hot water bath at 60 °C.

- 12a. (2 pts) Circle the final physical state of the benzene, and draw a box around the initial physical state of the benzene. Answer: Solid Liquid Gas
- 12b. (3 pts) In order to calculate the amount of head adsorbed by the benzene, circle all the values needed. The molar heat capacity, C_m, has units of J/mol K.

$\Delta H^{o}_{vap} \Delta H^{o}_{fus} C_{m}(s) C_{m}(l) C_{m}(g) n_{C_{e}H_{e}} MM_{C_{e}H_{e}}$

12c. (3 pts) For the vaporization of benzene, C₆H₆:

 $C_6H_6(I) \rightarrow C_6H_6(g) \Delta H^o_{vap} = 33.9 \text{ kJ}, \Delta S^o_{vap} = 96.4 \text{ J/K}$

Estimate the boiling point of benzene from the equation $\Delta G = \Delta H - T\Delta S$. (Recall the value of ΔG for a phase change.) Leave this value in kelvins, K.

Show your work for full credit.

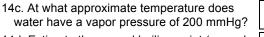
Answer with units of K:

- 13. Consider this graph for which **n** = moles.
- 13a. (2 pts) Which line represents the lowest temperature? Circle: Blue (tallest) Red or Green
 - Kinetic energy
- 13b. (1 pt) The average molecular speed increases or decreases with an increase in temperature.

13c. (1 pt) Instead of moles, the y-axis could have been labeled any of these, except... Circle the exception:

fraction number speed

14. (1 pt ea) The vapor pressures (in mmHg) for three liquids are shown in this diagram. The liquids are pentane in red, CCl₄


in green and water is blue.

14a. What liquid has the lowest vapor pressure?

Circle: Pentane CCI₄ or H₂O

14b. Estimate the vapor pressure of CCl₄ at

40 °C?

14d. Estimate the normal boiling point (normal means P = 1 atm) for pentane.

14e. What substance(s) is/are liquid(s) at 50 °C? Circle one, two or all three: Pentane CCI₄ H₂O

- 15. Pd has a unit cell dimension of 389 pm and is fcc.
- 15a. (4 pts) What is the atomic radius of palladium in pm? Show your work for full credit. Answer with units of pm:

15b. (4 pts) What is the density of Pd in units of g/cm³?

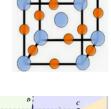
See information in yellow box. Show your work for full credit.

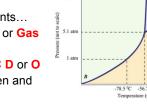
Answer with units of g/cm³:

16. (3 pts) An ionic salt crystallizes as shown here. The blue atoms form a bcc sublattice with the orange atoms at all of the edge-centers. What is the formula of the salt in the format Blue_xOrange_v? (How many net ions are within each unit cell?)

Your answer: Blue Orange

- 16. (1 pt ea) In the phase diagram:
- 16a. The green represents...
- Circle: Solid Liquid or Gas
- 16b. The triple point is
- labeled... Circle: B C D or O 16c. Crossing from green and
- purple represents...

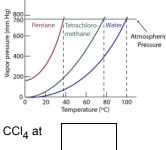

Circle: fusion vaporization or sublimation 16d. What state exists under standard conditions? Circle: Solid Liquid or Gas


16e. The critical temperature is: -78.5 °C -56.7 °C 31.0 °C

17. (10 pts) Nomenclature. Cross out all misnamed compounds. Skip this if you are nomenclature certified.

Na ₂ O ₂ sodium peroxide	H ₂ SO ₄ sulfuric acid
V ₂ O ₄ vanadium tetroxide	CS ₂ carbon disulfide
Na ₂ SO ₃ sodium sulfate	Fe ₂ S ₃ iron(III) sulfite
Ca ₂ (PO ₄) ₃ calcium phosphate	NO ₃ nitrate
PCl ₃ potassium trichloride	LiCIO2 lithium chlorite

Total score (out of 100):



1000

Answers:

1. 0.996 atm

2. 109.2 kPa

3.↓↑↓↑

4. 1000 L

5a. 3.62 x 10⁴ mol

5b. 581 mmHg (or 0.764 atm)

5c. 3.59 x 10⁴ mol

6. An experiment often used in general chemistry labs (not ours) leads to an estimation of molar mass.

6a. MM = mRT/PV

- 6b. 44.3 g/mol
- 7. 1.25 g/L
- 8. 27.3 g/mol
- 9.

	ΔS	ΔH
a. Combustion of paraffin	> 0	< 0
b. Melting candle wax	> 0	> 0
c. Candle making (from liquid)	< 0	< 0

9d. 9a

```
10.

No H<sub>2</sub>O(I) → H<sub>2</sub>O(s) Yes N<sub>2</sub>(I) → N<sub>2</sub>(g)

No SO<sub>2</sub>(g) + 2 H<sub>2</sub>S(g) → 3 S(s) + 2 H<sub>2</sub>O(g)

Yes C<sub>5</sub>H<sub>12</sub>(I) + 8 O<sub>2</sub>(g) → 5 CO<sub>2</sub>(g) + 6 H<sub>2</sub>O(g)

11.

11a. C<sub>5</sub>H<sub>11</sub>OH 11b. C<sub>14</sub>H<sub>30</sub>

11c. C<sub>2</sub>H<sub>4</sub>(OH)<sub>2</sub> 11d. C<sub>2</sub>Cl<sub>6</sub>

12a. Box: Solid Circle Liquid

12b. ΔH<sup>o</sup><sub>fus</sub> C<sub>m</sub>(s) C<sub>m</sub>(I) n<sub>C<sub>6</sub>H<sub>6</sub>

12c. 352 K</sub>
```

13a. Blue

13b. increases

- 13c. speed
- 14a. H₂O

14b. ~200 mmHg

- 14c. ~60 ^oC
- 14d. ~38 ^oC
- 14e. CCl₄ H₂O 15a. 137 pm 15b. 12.01 g/cm³ 16. Blue₂Orange₃ 16a. Solid 16b. O 16c. fusion

16d. Gas 16e. 31.0 ^oC 17. Misnamed compounds. V_2O_4 vanadium tetroxide Na_2SO_3 sodium sulfate Fe_2S_3 iron(III) sulfite

NO₃ nitrate

PCI₃ potassium trichloride