Exam 1 Chm 205 (Dr Mattson) 5 February	
Academic Integrity Pledge: In keeping with Creighton University's ideal the Academic Integrity Code, I pledge that this work is my own and that I have given nor received inappropriate assistance in preparing it.	
credit for how you worked each problem as well as for the correct and writing "See Attached" in the answer box. Write your name on th	vided! Write legibly. Include units whenever appropriate. You will receive swer. If you need more space, you may use the back of the data sheet ne data sheet if it contains work to be graded. On your desk you may able calculator without a slipcover. Backpacks, bags, and similar items ust be silent and placed in your backpack/bag – not with you.
 (5 pts) Which of these solutes would you expect to be soluble in water? Circle all that are soluble in water. Sketch Lewis structures on data sheet if uncertain. 	Show work for credit.
CH_3OH KNO_3 C_2CI_6 CH_3NH_2 $(NH_4)_2SO_4$	
2. The compound <i>p</i> -dibromobenzene, $C_6H_4Br_2$, is solid	Answer (2 decimal places) with units:
that is soluble in diethyl ether, $C_2H_5O_2$, (a liquid with a density of 0.713 g mL ⁻¹). Suppose 4.00 g $C_6H_4Br_2$ is dissolved in 50.0 mL of $C_2H_5O_2$. Use this table to	5. (4 pts) At 25 ^o C the vapor pressure of methanol is 97.7 mmHg and that of propanone is 230 mmHg. What is the vapor pressure of a solution that contains 3.50 mol methanol and 7.10 mol propanone?
organize your work and answer Questions 2a, 2b, 2c MM Mass Moles 225.0 g/mol. C. H. Br. 4.00 g	Show work for credit.
235.9 g/mol C ₆ H ₄ Br ₂ 4.00 g	Answer (3 sig fig) with units:
74.1 g/mol $C_2H_5O_2$	6. (4 pts) What is the freezing point of a 0.25 $m \text{ K}_2\text{S}(\text{aq})$
$2a$ (4 pts) What is the mass percent $C_6H_4Br_2$?	solution? Given: $T_f = 0$ °C for H ₂ O. $K_f = 1.86$ deg/molal.
Show work for credit.	Show work for credit.
Answer (3 sig figs) with units:	
2b (4 pts) What is the mole fraction of C ₆ H ₄ Br ₂ ?	Answer (2 decimal places) with units:
Show work for credit.	7. (4 pts) What is the osmotic pressure of 0.130 M KNO ₃ (aq) at 22 ^o C? Given: R = 0.0821 L atm mol ⁻¹ K ⁻¹
Answer (3 sig figs):	Show work for credit.
2c (4 pts) What is the molality of $C_6H_4Br_2$	
Show work for credit.	Answer (3 sig fig) with units:
	8. (4 pts) Suppose 7.577 g of an unknown non-volatile,
Answer (3 sig fig) with units:	non-electrolytic solid is dissolved in 50.0 g water and the
3. (4 pts) The Dead Sea is 31.5 mass percent NaCl and has a density of 1.24 g mL ⁻¹ . What is the molarity of the	solution freezes at -2.22 °C. What is the MM of solid? See Question 6 for data. Show work for credit.
NaCl (MM = 58.44 g mol^{-1})? Show work for credit.	
Show work for creait.	Answer (3 sig fig) with units:
	9. (4 pts) What is the molality of 17 ppm Hg ²⁺ (aq)?
	Show work for credit.
Answer (3 sig fig) with units:	

given water's vapor pressure at 25 °C is 23.77 mmHg?

Answer in scientific notation, 2 sig fig, with units:

10a. (4 pts) What is the rate expression for this reaction?
$NOBr(g) \rightarrow NO(g) + Br(g)$

Trial [NOBr]		rate = -∆[NOBr]/∆t	
1	0.0390 mol L ⁻¹	1.14 x 10 ⁻³ mol L ⁻¹ s ⁻¹	
2	0.0220	3.64 x 10 ⁻⁴	
3	0.0500	1.88 x 10 ⁻³	

Show work for credit.

Answer: rate =

10b. (4 pts) What is the rate constant for this reaction?

Show work for credit.

- Answer (3 sig fig) with units:
- 11a (4 pts) We began Chapter 14 by studying this reaction and data. We determined the reaction was first order in $[N_2O_5]$. What is the rate constant for this reaction?

 $2 \text{ N}_2\text{O}_5(g) \rightarrow 4 \text{ NO}_4(g) + \text{O}_2(g)$

Time (s)	[N ₂ O ₅] (mol/L)
0	2.330
1000	1.260
2000	0.681
3000	0.369

Show work for credit.

Answer with units:

11b. (4 pts) What is the half-life in seconds?

Show work for credit.

Answer (3 sig fig) with units:

11c. (4 pts) What is the rate if $[N_2O_5] = 3.00 \text{ mol/L}?$

Show work for credit.

Answer (3 sig fig) with units:

12. A time vs. concentration study for the reaction of A \rightarrow Products was completed and produced these plots.

12a. (3 pts) What is the order of the reaction?

12b. (3 pts) Write the rate = rate expression.

13. At 500 °C cyclopropane, C₃H₆, rearranges to propene.

The reaction is first order with $k = 0.0402 \text{ min}^{-1}$. The initial [C3H6] is 0.0500 mol/L

13a. (4 pts) What is [C₃H₆] after 30.0 min?

13b. (4 pts) How many minutes does it take for $[C_3H_6]$ to

14. Let **R = red circles** and **B = blue circles**. Use these two charts to answer the questions that follow.

14a. (3 pts) Left figure: Carefully label Eact^{fwd}, Eact^{rev}, △H_{rxn}.

- 14b. (1 pt) Circle the transition state.
- 14c. (3 pts) Draw two vertical lines and label them, on the right figure to represent Eact find and Eact rev for this reaction. Note that "speed" is related to collision energy.
- 14d. (2 pts) Write a balanced chemical reaction for this reaction using Rs and Bs.
- 14e. (2 pts) How many steps are in this mechanism?

14f. (3 pts) Write the rate expression for this mechanism.

rate =

14g. (2 pts) Is this reaction exothermic or endothermic?

Exothermic Endothermic

Forward

Reverse

Both

- 14h. (3 pts) Considering the Arrhenius equation, $k = A \times e^{-Eact/RT}$, will the forward and/or reverse reaction rates increase if the temperature is raised?
- 14i. (2 pts) How will the rate constants for the forward and reverse reactions compare?

Answers:

 $1. \ CH_3OH \ (yes, H-bonding) \ KNO_3 \ (yes, soluble \ ionic) \\ C_2Cl_6 \ (no, \ non-polar) \ CH_3NH_2 \ (yes, H-bonding) \\ (NH_4)_2SO_4 \ (yes, \ soluble \ ionic)$

2.

MM		Mass	Moles
235.9 g/mol	$\rm C_6H_4Br_2$	4.00 g	0.0169 mol
74.1 g/mol	$C_2H_5O_2$	35.65 g	0.481 mol

2a 10.1 %

2b 0.0340

2c 0.476 mol/kg or 0.476 molal

3. 6.69 M

4. 23.00 mmHg

5. 186 mmHg

6. T_f = -1.40 ^oC

7. 6.30 atm

8. MM = 127 g/mol

9. 8.5 x 10⁻⁵ molal

10a. rate = k[NOBr]²

10b. 0.749 L mol⁻¹ s⁻¹

11a 6.15 x 10⁻⁴ s⁻¹

11b. 1130 s

- 11c. 1.85 x 10⁻³ s⁻¹ mol/L s?
- 12a. second order
- 12b. rate = $k[A]^2$
- 13a. 0.015 mol/L

13b. 40 min

14. Let **R** = red circles and **B** = blue circles. Use these two charts to answer the questions that follow.

14a. E_{act}^{fwd} , E_{act}^{rev} , ΔH_{rxn} 14b. The transition state is the top of the "hill" 14c. E_{act}^{fwd} red line and E_{act}^{rev} blue line 14d. $B_2 + R \rightarrow B + BR$ 14e. one 14f. rate = k[B₂][R] 14g. exothermic 14h. both 14i. k^{fwd} > k^{rev}

General Chemistry with Dr. Mattson Course website: http://mattson.creighton.edu

A → Products	Zero Order	First Order	Second Order
Rate Expression	rate = k	rate = k [A]	rate = k [A] ²
Units on k, the rate constant	mol L ⁻¹ s ⁻¹ or mol / L s	1 / s or s ⁻¹	L mol ⁻¹ s ⁻¹ or L / mol s
Test for order: straight-line Plot	[A] _t vs t	ln[A] _t vs t	1 / [A] _t vs t
Time-Conc. Expression	$[A]_{t} = -k t + [A]_{0}$	$\ln([A]_0 / [A]_t) = k t$	$1/[A]_{t} = k t + 1/[A]_{0}$
Half-life	$t_{1/2} = [A]_0 / 2 k$	t _{1/2} = 0.693 / k	t _{1/2} = 1 / k [A] ₀