

Objective: To determine the standard reduction potential, E°, for Cu²⁺(aq)

We will determine E^o for this half-reaction.

And we shall see how we could do the same for any half reaction. There is nothing special about copper.

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) E^{\circ} = ?$

Overview:

- 1. Background information
- 2. Making the solutions
- 3. Making the graph
- 4. Procedure: What we are doing.
- 5. Your lab report

This is your basic copper-colored tulip

1. Background information

We start with the ΔG and Q_c equation we learned about in the thermo chapter. The formula is used to calculate ΔG under non-standard conditions.

We used it previously in the urea experiment.

$$\Delta G_{sol'n} = \Delta G^{o}_{sol'n} + RT \ln(Q_c)$$

When we used it in the urea experiment, we utilized the fact that $\Delta G = 0$ at equilibrium, so the equation becomes:

 $0 = \Delta G^{o}_{sol'n} + RT \ln(K_c)$

Info for Introduction See Section 17.10 in our book.

1. Background information

2. Making the solutions

2. Making the solutions

Progressive dilutions...

Stock first second third fourth

E E^om

log(

 $\frac{0.10}{(Cu^{2+1})}$

The stock Cu²⁺ solution is about 0.10 M – use the exact concentration provided. Each dilution contains 20.0 mL of the previous solution and 30.0 mL water.

9

				D			
	Α	В	С	D			
1	Dilution	Cu2+(aq)	log(0.10/[M2+])	E (volts)			
2	none	0.0997	0.001				
3	first	0.0399	0.399				
4	second	0.0160	0.797				
5	third	0.0064	1.195				
6	fourth	0.0026	1.593	Do first			
_							

Make all five solutions before measuring any E values. Start with the most dilute solution. Measure E for the 4th solution first, then the 3rd, then the 2nd, and the 1st, and lastly for the undiluted solution.

	_	A	B	С	D	And the second s		
	1	Dilution Cu2+(aq) none 0.0997 first 0.0399		log(0.10/[M2+])	E (volts)			
	2			0.001	1.086	Constraints of the second s		
	3			0.399	1.082			
	4	second	0.0160	0.797	1.079	a de la participación de l		
	5	third	0.0064	1.195	1.074			
	6	fourth	0.0026	1.593	1.070			
Graph the stuff in the box. The x-axis is log(0.10/[Cu ²⁺]) and the y-axis is E.								
1.072 1.070 1.068	2 0 8 0.00 0	.20 0.40 0.60 log((0.80 1.00 1.20 0.10/[Cu2+])	1.40 1.60 1.80				

4. What we are doing today

Wear your safety glasses.

(1)

- 2 The cover sheet summarizes everything that you need to include with your report.
- ③ We will follow the procedure pretty closely today. In the analysis part, we do print the Excel data and chart.
- 4 Take time writing an introduction in your own words before lab.
- 5 *Record observations and details as carefully as possible.*
- 6 You can record data directly into Excel or you can copy the data into your lab notebook. Attach your Excel data and graph
- *7* Set the voltmeter to read DC Volts.
- 8 *Red wire always goes to the copper wire*
-) Values jump around a bit. Take a reading after 10 seconds or so.
- 1) In your conclusions, calculate percent error from the literature value, $E^{\circ} = 1.10 \text{ V}.$

Chem Lab with the Stick People and Bird was created and produced by Dr. Bruce Mattson, Creighton Chemistry. Enjoy it and share it if you wish.

5. Your lab report

- First, the cover page with TA initials.
- Next, the trimmed copy pages from your lab notebook
- 3 Next, attach your Nernst chart, including the data.
- 4 Staple everything together.
- 5 There is no on-line component this week.
- 6 Turn in lab report today or *before* the start of class
 - tomorrow. Late labs may not be graded see the syllabus.

Woo-hoo!

Out early!

