Determination of K_{sp} for Calcium Hydroxide
20 February 2020

This is what calcium hydroxide looks like... It costs $160/ton.

Hmm. So if we all chip in $4...
Objectives: To determine a useful value: an equilibrium constant.

Overview:
1. The equilibrium constant of a sparingly soluble ionic solid.
2. Overview of the experiment and calculations.
3. The titration
4. Procedure: What we do today
5. Your lab report

Today we will perform a colorful titration on our way to estimating a value of an equilibrium constant for a sparingly soluble salt.

The salt we will study is Ca(OH)$_2$ which is only a little soluble.

I use the word sparingly sparingly.
1. The equilibrium constant of a sparingly soluble ionic solid.

\[\text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2 \text{OH}^{-}(aq) \]

\[K_c = [\text{Ca}^{2+}][\text{OH}^-]^2 \]

This is the equilibrium we will study. We know \(K_c \) is stuff on the right divided by stuff on the left and we ignore solids.

Calcium hydroxide does not dissolve very much, but the little bit that does, dissociates 100\% into ions...

Arrows going both ways means we have an equilibrium.

...because all ionic substances that dissolve dissociate 100\% into ions. Even sparingly soluble ionics do this.
2. Overview of the experiment and calculations

\[\text{Ca(OH)}_2(\text{s}) \xleftrightarrow{} \text{Ca}^{2+}(\text{aq}) + 2 \text{OH}^- (\text{aq}) \quad K_c = [\text{Ca}^{2+}][\text{OH}^-]^2 \]

If we titrate the \(\text{OH}^- \) with a known concentration of \(\text{HCl(aq)} \), we can figure out moles of \(\text{HCl} \) used by using

\[n_{\text{acid}} = M_{\text{acid}} V_{\text{acid}} \]

And from there we can figure out the moles of \(\text{OH}^- \) that were present from the 1:1 stoichiometry of the acid-base titration. The moles of \(\text{OH}^- \) equals the moles of \(\text{H}_3\text{O}^+ \),

\[n_{\text{base}} = n_{\text{acid}} \]

\[\text{H}_3\text{O}^+ (\text{aq}) + \text{OH}^- (\text{aq}) \rightarrow 2 \text{H}_2\text{O(l)} \]
2. Overview of the experiment and calculations

Here’s our “road map”. From moles of OH^-, we get the molarity of OH^-. That gives us $[\text{Ca}^{2+}]$ from the 2:1 stoichiometry. With $[\text{OH}^-]$ and $[\text{Ca}^{2+}]$ we calculate K_c! Easy peasy.

$n_{\text{OH}^-} = n_{\text{H}_3\text{O}^+}$

$[\text{OH}^-] = \frac{n_{\text{OH}^-}}{\text{original Ca(OH)}_2 \text{ Sol’n}}$

$[\text{Ca}^{2+}] = \frac{[\text{OH}^-]}{2}$

$K_c = [\text{Ca}^{2+}][\text{OH}^-]^2$
2. Overview of the experiment and calculations

$$\text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(\text{aq}) + 2 \text{OH}^-(\text{aq}) \quad K_{sp} = [\text{Ca}^{2+}][\text{OH}^-]^2$$

$$K_c = [\text{Ca}^{2+}][\text{OH}^-]^2 \quad \text{or} \quad K_{sp} = [\text{Ca}^{2+}][\text{OH}^-]^2$$

Here is the simplest slide ever! K_c is given a new name, K_{sp} – just to remind readers that the equilibrium constant has something to do with solubility.

The sp in K_{sp} stands for solubility product.

... it also means super parrot. Just sayin’
As the titration proceeds (with adequate swirling), our end-point is when the solution is no longer blue-green, but before it gets yellowish-green.

So this whole thing is rather squishy.

This is the one!
3. The titration

Use a 3 x 5 notecard as a light scoop...

... and compare what you get with your partner.

What did you get?

12.22. You?
The same

Good!
3. The titration

We can speed titrate! The volume of acid used in the first trial will be similar to the volumes needed in the next trials. That lets us “speed titrate”. Suppose the first titration took 15.05 mL? That means the other titrations will take about the same – so we can jet in the first 12 or 13 mL and then slow down for the perfect middle-green.

If you “think” maybe you should add one more drop, write down the buret volume before you do – just in case it was a bad idea.

This is me getting out of lab early.
4. Procedure: What we do today

① Take time writing an introduction in your own words before lab.
② Record observations and details as carefully as possible. Show your calculations with formulas, units, and significant figures!
③ After the first titration is done, the subsequent titrations will take about the same volume of HCl(aq).
④ Compare your K_{sp} with the literature value (from our textbook or the internet). Cite your reference.
⑤ The cover sheet summarizes everything that you need to include with your report.

You’ll be entering data into a Google form. Exponential numbers are entered as in this example: 8.00×10^{-6} would be entered as 8.00E-6 – note there are no spaces!
5. Your lab report

① First, the cover page with TA initials.
② Next, the trimmed copy pages from your lab notebook stapled together. Staple all together.
③ **On-line results** due at the end of class today. **Late submissions are not graded** – see the syllabus.
④ No attached pages today.
⑤ Turn in lab report today or **before** the start of class tomorrow. **Late labs may not be graded** – see the syllabus.

Stick people inspired by xkcd cartoons by Randall Munroe (www.xkcd.com)

Chem Lab with the Stick People and Bird was created and produced by Dr. Bruce Mattson, Creighton Chemistry. Enjoy it and share it if you wish.