

Objective: To use an acid-base titration to determine the concentration of vinegar.

Today we will perform our first titration of an acid with a base.
... and learn one of the most important techniques used by chemists, especially students in Gen. Chem.

Overview:

1. Titrations, neutralization reactions, and $n=M V$
2. Calculating molarity and mass percent
3. Procedure: What we are doing today
4. Tricks of the trade
5. Your lab report

I can do tricks.

1. Titrations, neutralization reactions, and $n=M V$

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ acetic acid + sodium hydroxide \rightarrow water + sodium acetate

"Stoichiometric" is a fun word. I like to drop it into polite conversation.

In a titration, when the acid and base have reacted "stoichiometrically", that is one-to-one, we call that the equivalence point.

1. Titrations, neutralization reactions, and $n=M V$

This is the basic set up for all titrations.

The acid in the flask is added in the beginning before the titration. The purpose of the titration is to determine how many moles of acid were present.

1. Titrations, neutralization reactions, and $n=$ MV

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

 acetic acid + sodium hydroxide \rightarrow water + sodium acetateInfo for Introduction

The acetic acid is in the flask. In our experiment,
we use 2.00 mL acetic acid and about 40 mL deionized water - the volume of water doesn't matter too much.

The sodium hydroxide is in the buret and we can add as much as we need until we've added an amount equivalent to the acid present.

A few drops of phenolphthalein tells us when we've added enough hydroxide.

1. Titrations, neutralization reactions, and $n=M V$

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

The first sign of pink that persists for a few seconds with stirring means we've reached the equivalence point and we are ready for calculations.

Info for calculations

We use the formula $\boldsymbol{n}=\mathbf{M} \mathbf{x} \mathbf{V}$ for NaOH . We will be given the molarity of $\mathrm{NaOH}, \mathrm{M}_{\mathrm{NaOH}}$ and we determine the volume used from the buret.

2. Calculating molarity and mass percent

To repeat, we determined the number of moles of NaOH from the $\boldsymbol{n}=\boldsymbol{M} \boldsymbol{x} \boldsymbol{V}$ formula using the volume added at the equivalence point. We
 got 0.001402 mol NaOH

From the equation and the 1:1 stoichiometry, we know we have the same number of moles of acetic acid, $0.001402 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

Info for Introduction

$$
\begin{aligned}
& \mathbf{n}_{\mathrm{NaOH}}=\mathbf{M}_{\mathrm{NaOH}} \mathbf{V}_{\mathrm{NaOH}} \\
& =0.09858 \mathrm{~mol} / \mathrm{L} \times 0.01422 \mathrm{~L} \\
& =0.001402 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

memern

$$
\begin{aligned}
& \mathbf{n}_{\text {acetic acid }}=\mathbf{n}_{\mathrm{NaOH}} \\
& =0.001402 \mathrm{~mol} \mathrm{HC} 2 \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

Here is the formula for molarity. We know both the moles and the volume!

So listen up. The actual concentration of NaOH will be written on the marker board in lab. It is not $0.09858 \mathrm{~mol} / \mathrm{L}$

2. Calculating molarity and mass percent

With this formula, we need to use $0.00200 \mathrm{~L}(2.00 \mathrm{~mL})$ for the volume of acid used in the first place. So the acetic acid tested was $0.7009 \mathrm{~mol} / \mathrm{L}$.

$$
\begin{aligned}
& M_{\text {acetic acid }}=\frac{n_{\text {acetic acid }}}{V_{\text {vinegar }}} \\
& M_{\text {acetic acid }}=\frac{0.001402 \mathrm{~mol}}{0.00200 \mathrm{~L}}
\end{aligned}
$$

$M_{\text {acetic acid }}=0.7009 \mathrm{~mol} / \mathrm{L}$
$\mathbf{M}_{\text {acetic acid }}=0.701 \mathrm{~mol} / \mathrm{L}$ (with 3 sig figs) calculations

2. Calculating molarity and mass percent

Mass percent is a tad trickier. The formula is...

$$
\text { Mass } \%=100 \% \times \frac{m_{\text {acetic acid }}}{m_{\text {vinegar sol'n }}}
$$

We can easily figure out the mass of the acetic acid using $\boldsymbol{m}=\boldsymbol{n} \mathbf{x} \mathbf{M} \mathbf{M}$, that is mass $=$ moles \times molar mass.

The molar mass of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is $60.05 \mathrm{~g} / \mathrm{mol}$. Ooops! I wasn't supposed to tell you that.

mass $_{\text {acetic acid }}=n_{\text {acetic acid }} \times \mathrm{MM}_{\text {acetic acid }}$
 mass $_{\text {acetic acid }}=0.001402 \mathrm{~mol} \times 60.05 \mathrm{~g} / \mathrm{mol}$
 mass $_{\text {acetic acid }}=0.08419 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

2. Calculating molarity and mass percent

Sooo, if we measure the mass of the little vinegar solution as we go, we'll be all set...

$$
\text { Mass } \%=100 \% \times \frac{m_{\text {acetic acid }}}{m_{\text {vinegar sol'n }}}
$$

3. Procedure: What we are doing today.

Today we are doing three trials repeating the experiment three times and after that we will average the results.

Each trial starts with measuring 2.00 mL of vinegar into a tared weighing boat on a mini-balance.

Record the mass of the vinegar solution - it should be very close to 2.00 g .

Next pour the vinegar into the flask. Rinse the last drops into the flask with deionized water

If the mass is less than 1.99 or more than 2.02, you messed up. Redo the volumetric pipet Info for
Introduction

3. Procedure: What we are doing today.

From each trial, we determine the moles of acetic acid and use that to calculate the molarity and the mass percent of the of acetic acid in the vinegar.

And here are the aforementioned equations you will use to do these calculations.

$$
\mathbf{n}_{\text {acetic acid }}=\mathbf{n}_{\mathrm{NaOH}}=\mathrm{M}_{\mathrm{NaOH}} \mathbf{V}_{\mathrm{NaOH}}
$$

$$
\text { Mass \% = 100\% x } \frac{m_{\text {acetic acid }}}{m_{\text {vinegar sol'n }}}
$$

We need three good trials. If you add too much NaOH , it will be too pink. Write "Over-titrate" in your lab notebook and start over on that trial.

3. Procedure: What we are doing today.

For each trial we determine molarity and mass percent. Then we average the results from three good trials.

Remember $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ is the same as $M_{\text {acetic acid. }}$ Both mean molarity of acetic acid in units of $\mathrm{mol} / \mathrm{L}$.

Trial $\mathrm{V}_{\mathrm{NaOH}} \quad \mathrm{m}_{\text {solution }} \mathrm{n}_{\text {acetic acid }}$
$14.22 \mathrm{~mL} 2.02 \mathrm{~g} \quad 0.001402 \mathrm{~mol} 0.7009 \mathrm{M}$ $14.90 \mathrm{~mL} 2.00 \mathrm{~g} \quad 0.001469 \mathrm{~mol} 0.7344 \mathrm{M} 4.41 \%$ $14.28 \mathrm{~mL} 2.01 \mathrm{~g} \quad 0.001408 \mathrm{~mol} 0.7039 \mathrm{M}$ 4.21\% Aver

Info for calculations

See how the volumes of NaOH for Trial 2 is not very similar to the other two. They really should be if you are doing it right... This is how you know if one of the trials is probably bad.

3. Procedure: What we are doing today

Because Trial 2 was wonky, we do another trial and if it looks similar to the other two, we average those three!

We average the three good molarities and mass percents.

Triaf $\mathrm{V}_{\mathrm{NaOH}} \quad \mathrm{m}_{\text {solution }} \mathrm{n}_{\text {acetic acid }} \quad\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ Mass $\%$
$1 \quad 14.22 \mathrm{~mL} \quad 2.02 \mathrm{~g} \quad 0.001402 \mathrm{~mol} 0.7009 \mathrm{M} 4.17 \%$

- $214.90 \mathrm{~mL} \quad 2.00 \mathrm{~g} \quad 0.001469 \mathrm{~mol} 0.7344 \mathrm{M} 4.41 \%$
$314.28 \mathrm{~mL} 2.01 \mathrm{~g} \quad 0.001408 \mathrm{~mol} 0.7039 \mathrm{M} 4.21 \%$
$4 \quad 14.26 \mathrm{~mL}$ ($70 \mathrm{~g} 0.001406 \mathrm{~mol} 0.7029 \mathrm{M} 4.22 \%$
Average
Trial 2 was too
0.7025 M 4.20\%

3. Procedure: What we are doing today.

Show all of your calculations for each trial in your lab notebook. If you decide to throw out a trial, just draw a single line through it.

We are shooting for a very faint pink that persists for 15 seconds with stirring. This will lead to the fewest moles of NaOH . How do you think that will affect molarity of the acid?

It's important to recognize trials that are probably bad and should be repeated. If you use too much NaOH , the solution wilt be too pink. In the three trials in the previous slide, Trial 1 was the least pink and Trial 2 was the most pink. Your three trials should come within 0.5 mL of each other.

Ask about bonus points for very faint persistent pinks.

3. Procedure

3. Procedure: What we are doing today.

Y You will be turning in results on-line today. Many of the numbers are small, such as 0.001402 M. You can enter this number just as shown: 0.001402 M...

BUT if you use exponential notation, there is only one correct way to enter this sort of data so Excel can recognize it. Use this E format and NO spaces at all:
1.402E-3

Dejy RTGY

14.402 10 as doesh't woik

1402E:3 docesh t woht
14102×1043 doesn 4 wons. heorrect enties result inpointios:

There are no spaces except to add units.
1.402E-3 M is ok

3. Procedure: What we are doing today.

Wearyour safety glasses today and dress for a mess.

The cover sheet summarizes everything that you need to
 include with your report.

We do three separate calculations for moles, molarity and mass percent for each of the three trials.

So let's talk about some titration tricks!

4. Tricks of the trade

Use a 3×5 notecard as a light scoop...

... and compare

 what you get

4. Tricks of the trade

One easy way to start exactly at the mark is to draw the solution up past the mark, hold your finger firmly on the top and hold the tip of the pipet on the bottom of the beaker. Roll your finger slightly off the pipet and solution will slowly drop.

The last drop in a volumetric pipet is supposed to stay in

4. Tricks of the trade

We can touch the pipet to the side of the receiving

The best "Trick of the trade" is that we can speed titrate! Remember how the volumes of NaOH added were so similar in Slide 15? That lets us "speed titrate" and get out a bit earlier. Remember how the first titration took 14.22 mL ? That means the other titrations will take about the same - so we can jet in the first 12 or 13 mL and then slow down for the perfect pink.

If you "think" maybe you should add one more drop, write down the buret volume before you do - just in case it was a bad idea.

5. Your lab report

