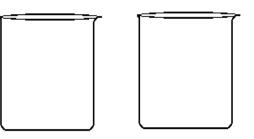
CHM 205 (Dr. Mattson) 22 April 2005	Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code adopted by the College of Arts and Sciences, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it. Signature: enever a calculation is required! You will receive credit for how you worked each problem as		
well as for the correct answer. This exam is			
 (4 pts) Write the formula for the fol measures of solution concentration. represent the mass of A, and n_A for a Instead of "A", you should write in " "solvent" or "solution." Use V_{sol'n}. for solution. (a) molarity 	lowing Use m _A to moles of A. ésolute",	4. (3 pts) Calculate the freezing point of a solution prepared by dissolving 85.0-g of table sugar, a non- electrolyte in 250.0 mL water. [Given: MM _{sugar} = 342 g/mol; d _{H2O} = 1.00 g/mL; k _f = 1.86 deg/molal].	
(b) molality			
(c) mole fraction		 5. (3 pts) Suppose a substance of unknown identity with a mass of 7.10 g were dissolved in 40.0 g water. If the solution froze at -1.60 °C, determine the molar mass of the unknown, assuming it is a 	
(d) mass percent]	non-electrolyte.	
 2. A solution is prepared by dissolving (MM = 187.6 g/mol) in 235 g water. (a) (2 pts) the mole fraction of Cu(NO₃) 	Calculate:		
(b) (2 pts) the mass percent $Cu(NO_3)_2$		6. (3 pts) The normal vapor pressure of the solvent methylene chloride is 427 mmHg at 298 K. What is the vapor pressure of this solvent if 3.0 moles of the	
		solvent contained 0.37 moles iodine, 1 ₉ ?	
(c) (2 pts) the molality of Cu(NO ₃) ₂		solvent contained 0.37 moles iodine, I ₂ ?	

Standard Reduction Potentials, E ^o (V)			
$Ag^+ + e^- \longrightarrow Ag$	+0.80		
$Fe^{+3} + e^{-} \longrightarrow Fe^{+2}$	+0.77		
$I_2(s) + 2 e^- \longrightarrow 2 I^-$	+0.54		
$Cu^{+2} + 2 e^{-} \longrightarrow Cu$	+0.34		
$Pb^{+2} + 2 e^{-} \longrightarrow Pb$	-0.13		
$\operatorname{Sn}^{+2} + 2 e^{-} \longrightarrow \operatorname{Sn}$	-0.14		
$Ni^{+2} + 2 e^{-} \longrightarrow Ni$	-0.26		
$Co^{+2} + 2 e^{-} \longrightarrow Co$	-0.28		
$Fe^{+2} + 2 e^{-} \longrightarrow Fe$	-0.44		
$Cr^{+3} + 3 e^{-} \longrightarrow Cr$	-0.74		
$Zn^{+2} + 2 e^{-} \longrightarrow Zn$	-0.76		
$Mg^{+2} + 2 e^{-} \longrightarrow Mg$	-1.66		

- 8. (8 pts) Multiple Choice
 - (a) Which of these is the best reducing agent? (A) Ag (B) Ag⁺ (C) Cr (D) Zn⁺²
 - (b) Which of these is most easily reduced? (A) Zn (B) Cr^{+3} (C) Ag (D) Fe^{+3}
 - (c) The cobalt(II) ion will react spontaneously with (A) Fe^{+2} (B) Pb^{+2} (C) Cu (D) Cr
 - (d) E^o for Ni | (Ni⁺², 1.0 M) | | (Co⁺², 1.0 M)Co is (A) +0.02 v (B) -0.02 v (C) -0.54 v (D) +0.54 v
 - (e) E^0 for $Cr | (Cr^{+3}, 1.0 \text{ M}) | | (Ag^+, 1.0 \text{ M})Ag$ is
 - (A) +0.06 v (B) +3.74 v (C) +1.54 v (D) +1.66 v
 - (f) Copper will react spontaneously with (A) Pb (B) Zn^{+2} (C) Ag^+ (D) Cu^{+2}
 - (g) The reducing agent in the following equation is


IO ₃ -(aq) + 3	$SO_3^{2-}(aq)$ —	→ I ⁻ (aq) +	$3 \text{ SO}_4^{2-}(\text{aq})$
(A) IO ₃ -	(B) SO ₃ ²⁻	(C) I ⁻	(D) SO_4^{2-}

- (h) What oxidizing agent can be used to selectively oxidize nickel to Ni⁺² but will not oxidize the copper to copper(II)?
 - (A) Pb (B) Fe^{2+} (C) Ag^+ (D) Sn^{2+}
- 9. Use the beakers provided (top of next column) to sketch the Galvanic cell:

 $Ni | Ni^{+2}(1 M) | |Ag^{+}(1 M) | Ag.$

(a, 1pt) Make the left cell the anode and the right cell the cathode. (b, 1 pt) Add the appropriate number of anions to each beaker — assume both solutions were prepared from the nitrate salts of the metal cations. (c, 1 pt) Sketch electrodes, salt bridge, and connecting wire. (d, 1 pt) Label both electrodes with "Ag", etc., and (e. 1 pt) indicate the direction of flow of electrons through the wire and direction of flow of ions through the salt bridge.

9f (2 pts) Write the balanced net ionic reaction.

- 10. (a) (2 pts) Calculate E° for the cell described in Question 9.
- (b) (3 pts) Calculate E for the cell if $[Ag^+] = 0.51$ M and $[Ni^{+2}] = 1.8$ M.

11 (a) (3 pts) Calculate ΔG° for the reaction:

 $Co^{+2}(aq) + Ni(s) \longrightarrow Co(s) + Ni^{+2}(aq)$

(b) (3 pts) What is the equilibrium constant, K_c?

12. (BONUS 1 point) Print your name here:

13. (BONUS #2 1 point) Turn in your 3 x 5 note card with your exam. Note: This bonus and the previous name bonus are available to everyone. The points offset any point deductions made on the exam.

 (For DocM's use)

 Your exam score (50 possible):

 Bonus pts: Max:

 Bonus pts: Max:

 Bonus pts: Max:

 Bonus pts:

 Bonus pts:

 Bonus pts:

 Bonus pt

 $A \ge 46.5; B+ \ge 43.5; B \ge 41.0;$ $C+ \ge 37.5; C \ge 34.00; D \ge 30.00$

Answers

```
1.
(a) molarity = n_{solute}/V_{solution}
(b) molality = n_{solute}/m_{solvent}(in kg)
(c) mole fraction = n_{solute}/(n_{solvent} + n_{solute})
(d) mass percent = 100\% \text{ x } \text{m}_{\text{solute}}/(\text{m}_{\text{solvent}} + \text{m}_{\text{solute}})
2.
(a) 0.027
(b) 22.4%
(c) 1.54 mol/kg
3. 0.401
4. -1.85 °C
5. 206.3 g/mol
6. 380 mmHg
7. B
8. C, D, D, B, C, C, B, D
9f. Ni + 2 Ag<sup>+</sup> \longrightarrow Ni<sup>+2</sup> + 2 Ag
10. 1.06 v
(b) 1.04 v
11 \Delta G = 3860 J
(b) Kc = 0.211
```