| Exam Five             | Academic Integrity Pledge:                                                                                                                                                      |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chm 205 (Dr. Mattson) | In keeping with Creighton University's ideals and with the Academic Integrity Code<br>adopted by the College of Arts and Sciences, I pledge that this work is my own and that I |
| 24 April 2009         | have neither given nor received inappropriate assistance in preparing it.                                                                                                       |
|                       | Signature                                                                                                                                                                       |

**Instructions:** Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

1. (5 pts) Balance the following redox reaction in acidic solution.

$$\operatorname{BrO}_4^- + \operatorname{NH}_4^+ \rightarrow \operatorname{Br}_2^- + \operatorname{NO}_2^-$$

2. Consider the following redox reaction:

$$Sn + 2 \operatorname{Ag}^+ \rightarrow Sn^{+2} + 2 \operatorname{Ag} \quad E^0 = +0.94 \operatorname{V}$$

2(a) (4 pts) Label the electrodes and solutions with the following labels: "Sn," "Sn<sup>+2</sup>," "Ag," and "Ag<sup>+</sup>." Assume that the anion in both cells and the salt bridge is nitrate. <u>Make the left cell the anode and the right cell the cathode.</u>



2(b) (3 pts) Indicate the direction of electron flow in the wire and of ion flow in the solution.

- 2(c) (2 pts) In which cell is the concentration of metal ions increasing? Circle: Anode or Cathode
- 2(d) (2 pts) In which cell is the mass of the electrode increasing? Circle: Anode or Cathode
- 2(e) (4 pts) Write the reaction using cell notation assuming all concentrations are 1.0 M

2(f) (2 pts) What is  $\Delta G^{0}$  for this reaction?

- A.  $\Delta G^{o} > 0$  B.  $\Delta G^{o} = 0$
- C.  $\Delta G^{0} < 0$  D. cannot predict

2(g) (2 pts) What is the value for n in this reaction?

A. one B. two C. three D. four

3. Given these two reduction half reactions:

Ni<sup>+2</sup> + 2 e<sup>-</sup> → Ni  $E^{0} = -0.26 V$ Co<sup>+2</sup> + 2 e<sup>-</sup> → Co  $E^{0} = -0.28 V$ 

3(a) (2 pts) Which is the most easily reduced?

A.  $Ni^{+2}$  B. Ni C.  $Co^{+2}$  D. Co

3(b) (2 pts) Which is the most easily oxidized?

A. Ni<sup>+2</sup> B. Ni C. Co<sup>+2</sup> D. Co

3(c) (4 pts) Write this as a balanced redox reaction:

Co | Co<sup>+2</sup> (1.0 M) | | Ni<sup>+2</sup> (1.0 M) | Ni

3(d) (4 pts) What is E<sup>o</sup> for this reaction?

3(e) (4 pts) What is  $K_c$  for this reaction?

3(f) (4 pts) What is  $\Delta G^0$ , in kJ, for this reaction?

3(g) (5 pts) Use the Nernst equation to calculate E if  $[Co^{+2}] = 0.040$  M and  $[Ni^{+2}] = 1.0$  M

4. (5 pts) How long would it take, in seconds, to electroplate 0.10 mol gold from a solution of Au<sup>+3</sup> using a current of 50 amps?

5(a) (2 pts) Write the electron configuration for  $Co^{+2}$ .

5(b) (2 pts) What +3 ion has electron configuration [Ar]  $4s^0 3d^3$ ?

6. (4 pts) Which ion is the smallest ion in each set?

(a)  $Cr^{+2}$   $Cr^{+3}$   $Cr^{+6}$ (b)  $Fe^{+2}$   $Co^{+2}$   $Ni^{+2}$ 

7(a) (3 pts) Sketch the *cis* isomer of  $Mn(Cl)_2(Br)_4^{-2}$ .



7(b) (3 pts) Sketch the *fac* isomer of  $Mn(Cl)_3(Br)_3^{-4}$ .



8. (4 pts) Carbon monoxide has the Lewis dot structure :C:::O: and is known to function as a ligand. Use formal charges to determine if the carbon or the oxygen end of the molecule donates the electron pair to the metal cation.

| Conclusion: | donates an E group to metal. |
|-------------|------------------------------|

9. (9 pts) Use Lewis dot structures to predict whether or not these could serve as ligands

| whether of not t | nese coura serve ( | is inguinab.   |  |
|------------------|--------------------|----------------|--|
| $\mathrm{PH}_3$  | $SiH_4$            | $SH_2$         |  |
|                  |                    |                |  |
|                  |                    |                |  |
| Ligand? Yes No   | Ligand? Yes No     | Ligand? Yes No |  |

10. (6 pts) Determine the oxidation state on the metal atom in each of these complexes.

 $Co(NH_3)_4(Br)_2$ 

K<sub>3</sub>[Fe(CN)<sub>6</sub>]

 $[Cr(NH_3)_6]SO_4$ 

- (2 pts) Is [Cr(NH<sub>3</sub>)<sub>6</sub>]SO<sub>4</sub>diamagnetic or paramagnetic? Circle: diamagnetic paramagnetic
- 12. (2 pts) Ethylene diamine has the formula NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>. This ligand
  - A. connects two metal cations together.
  - B. only coordinates in a trans arrangement.
  - C. is a bidentate chelate.
  - D. is associated with tetrahedral geometries.
- 13. (3 pts) Match description and picture
  - \_\_\_\_\_ The orbital called  $d_x 2_{-v} 2$
  - \_\_\_\_\_ The orbital called d<sub>z</sub>2

\_\_\_\_ One of three similar orbitals including d<sub>vz</sub>



14. (4 pts) Write balanced nuclear equations for the following processes:

| 14(a) α-emission of |  |
|---------------------|--|
| $^{210}_{85}At$     |  |
|                     |  |
| 14(b) β-emission of |  |

 $^{199}_{79}Au$ 

15. (3 pts) The half life of indium-111, a radioactive isotope used in studying the distribution of white blood cells, is t  $_{1/2}$  = 2.805 days. Approximately what percent of the isotope remains after 6 days?

(a) 10% (b) 20% (c) 33% (d) 50% (e) >50%

Print your name in the box.

Name: (only if you answer yes below):

Work to be graded on this sheet?

YES: If you have done work to be graded on this sheet, you must submit it with your exam and include your name above. Do not clip it to the exam — simply hand them in together.

NO: If there is nothing to grade on this sheet, simply return it to the pile next to the exams.

| 1                                                                          | 2                                                                  | 3                                                                  | 4                                                             | 5                                                                   | 6                                                     | 7                                                                 | 8                                                       | 9                                                                     | 10                                                     | 11                                                                    | 12                                                      | 13                                                      | 14                                                     | 15                                                      | 16                                                    | 17                                                   | 18                                                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| 1                                                                          |                                                                    |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         |                                                         |                                                        |                                                         |                                                       | 1                                                    | 2                                                       |
| н                                                                          |                                                                    |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         |                                                         |                                                        |                                                         |                                                       | н                                                    | He                                                      |
| 1.01                                                                       |                                                                    |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         |                                                         |                                                        |                                                         |                                                       | 1.01                                                 | 4 00                                                    |
| 3                                                                          | 4                                                                  | 1                                                                  |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | 5                                                       | 6                                                      | 7                                                       | 8                                                     | 9                                                    | 10                                                      |
| ı.                                                                         | Do                                                                 |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | Ď                                                       | Č                                                      | Ň                                                       | Ň                                                     | Ē                                                    | No                                                      |
|                                                                            | De                                                                 |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | D                                                       | C                                                      | IN                                                      | U                                                     | Г                                                    | INE                                                     |
| 6.94                                                                       | 9.01                                                               |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | 10.81                                                   | 12.01                                                  | 14.01                                                   | 16.00                                                 | 19.00                                                | 20.18                                                   |
|                                                                            |                                                                    |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | 13                                                      | <b>1</b> 4                                             |                                                         |                                                       |                                                      | 10                                                      |
| Na                                                                         | Mg                                                                 |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | AI                                                      | SI                                                     | Ρ                                                       | 5                                                     |                                                      | Ar                                                      |
| 22.99                                                                      | 24.31                                                              |                                                                    |                                                               |                                                                     |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       |                                                         | 26.98                                                   | 28.09                                                  | 30.97                                                   | 32.06                                                 | 35.45                                                | 39.95                                                   |
| 19                                                                         | 20                                                                 | 21                                                                 | 22                                                            | 23                                                                  | 24                                                    | 25                                                                | 26                                                      | 27                                                                    | 28                                                     | 29                                                                    | 30                                                      | 31                                                      | 32                                                     | 33                                                      | 34                                                    | 35                                                   | 36                                                      |
|                                                                            | <u> </u>                                                           |                                                                    |                                                               | 1 1 1                                                               |                                                       |                                                                   |                                                         |                                                                       |                                                        |                                                                       | 7                                                       | $\mathbf{\Omega}$                                       | $\mathbf{\Omega}$                                      | A                                                       |                                                       | D                                                    | 1/                                                      |
| I K                                                                        | La                                                                 | SC                                                                 |                                                               | V                                                                   | Cr                                                    | Mn                                                                | Fe                                                      | CO                                                                    | NI                                                     | CU                                                                    | Zn                                                      | Ga                                                      | Ge                                                     | AS                                                      | Se                                                    | BL                                                   | Kr                                                      |
| <b>K</b><br>39.10                                                          | <b>La</b><br>40.08                                                 | <b>5C</b><br>44.96                                                 | 47.90                                                         | <b>V</b><br>50.94                                                   | 52.00                                                 | <b>MN</b><br>54.94                                                | <b>⊢ e</b><br>55.85                                     | 58.93                                                                 | <b>NI</b><br>58.70                                     | 63.55                                                                 | <b>2n</b><br>65.38                                      | 69.72                                                   | Ge<br>72.59                                            | AS<br>74.92                                             | 5e<br>78.96                                           | 79.90                                                | <b>КГ</b><br>83.80                                      |
| 39.10<br>37                                                                | 40.08<br>38                                                        | <b>5C</b><br>44.96<br>39                                           | 47.90<br>40                                                   | <b>V</b><br>50.94<br>41                                             | 52.00<br>42                                           | <b>MN</b><br>54.94<br>43                                          | <b>⊢ e</b><br>55.85<br>44                               | 58.93<br>45                                                           | <b>NI</b><br>58.70<br>46                               | 63.55<br>47                                                           | <b>Zn</b><br>65.38<br>48                                | <b>Ga</b><br>69.72<br>49                                | <b>Ge</b><br>72.59<br>50                               | <b>AS</b><br>74.92<br>51                                | <b>5e</b><br><sub>78.96</sub><br>52                   | <b>Br</b><br>79.90<br>53                             | КГ<br>83.80<br>54                                       |
| 39.10<br>37<br><b>Rb</b>                                                   | Ca<br>40.08<br>38<br>Sr                                            | <b>5C</b><br>44.96<br>39<br><b>Y</b>                               | 47.90<br>40<br><b>Zr</b>                                      | V<br>50.94<br>41<br><b>Nb</b>                                       | Cr<br>52.00<br>42<br>Mo                               | Mn<br>54.94<br>43<br>TC                                           | Fe<br>55.85<br>44<br>Ru                                 | CO<br>58.93<br>45<br>Rh                                               | NI<br>58.70<br>46<br>Pd                                | CU<br>63.55<br>47<br>Ag                                               | 2n<br>65.38<br>48<br>Cd                                 | Ga<br>69.72<br>49<br>In                                 | Ge<br>72.59<br>50<br>Sn                                | AS<br>74.92<br>51<br>Sb                                 | 5e<br>78.96<br>52<br><b>Te</b>                        | Br<br><sub>79.90</sub><br>53<br>                     | κς<br>83.80<br>54<br><b>Χε</b>                          |
| к<br>39.10<br>37<br><b>Rb</b><br>85.47                                     | Ca<br>40.08<br>38<br>Sr<br>87.62                                   | <b>5C</b><br>44.96<br>39<br><b>Y</b><br>88.91                      | 47.90<br>40<br><b>Zr</b><br>91.22                             | V<br>50.94<br>41<br><b>Nb</b><br>92.91                              | 42<br>Mo<br>95.94                                     | Mn<br>54.94<br>43<br>Tc<br>97                                     | Fe<br>55.85<br>44<br><b>Ru</b><br>101.07                | <b>CO</b><br>58.93<br>45<br><b>Rh</b><br>102.91                       | NI<br>58.70<br>46<br>Pd<br>106.4                       | 63.55<br>47<br><b>Ag</b><br>107.87                                    | <b>2n</b><br>65.38<br>48<br><b>Cd</b><br>112.41         | Ga<br>69.72<br>49<br>In<br>114.82                       | Ge<br>72.59<br>50<br>Sn<br>118.69                      | AS<br>74.92<br>51<br>Sb<br>121.75                       | 5e<br>78.96<br>52<br>Te<br>127.60                     | <b>Br</b><br>79.90<br>53<br><b>I</b><br>126.90       | <b>K r</b><br>83.80<br>54<br><b>X e</b><br>131.30       |
| <b>K</b><br>39.10<br>37<br><b>Rb</b><br>85.47<br>55                        | <b>Ca</b><br>40.08<br>38<br><b>Sr</b><br>87.62<br>56               | <b>5C</b><br>44.96<br>39<br><b>Y</b><br>88.91<br>57                | 47.90<br>40<br><b>Zr</b><br>91.22<br>72                       | V<br>50.94<br>41<br><b>Nb</b><br>92.91<br>73                        | <b>Cr</b><br>52.00<br>42<br><b>Mo</b><br>95.94<br>74  | Mn<br>54.94<br>43<br>Tc<br>97<br>75                               | Fe<br>55.85<br>44<br>Ru<br>101.07<br>76                 | CO<br>58.93<br>45<br><b>Rh</b><br>102.91<br>77                        | NI<br>58.70<br>46<br>Pd<br>106.4<br>78                 | CU<br>63.55<br>47<br><b>Ag</b><br>107.87<br>79                        | <b>2</b> n<br>65.38<br>48<br><b>Cd</b><br>112.41<br>80  | Ga<br>69.72<br>49<br><b>In</b><br>114.82<br>81          | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82                | AS<br>74.92<br>51<br>Sb<br>121.75<br>83                 | <b>Se</b><br>78.96<br>52<br><b>Te</b><br>127.60<br>84 | <b>Br</b><br>79.90<br>53<br><b>l</b><br>126.90<br>85 | <b>K r</b><br>83.80<br>54<br><b>X e</b><br>131.30<br>86 |
| к<br>39.10<br>37<br><b>Rb</b><br>85.47<br>55<br>С.5                        | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba                       | <b>5C</b><br>44.96<br>39<br><b>Y</b><br>88.91<br>57                | 11<br>47.90<br>40<br><b>Zr</b><br>91.22<br>72<br>Hf           | V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta                         | Cr<br>52.00<br>42<br>Mo<br>95.94<br>74<br>W           | Mn<br>54.94<br>43<br>TC<br>97<br>75<br>Re                         | Fe<br>55.85<br>44<br>Ru<br>101.07<br>76<br>Os           | <b>CO</b><br>58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b>    | NI<br>58.70<br>46<br>Pd<br>106.4<br>78<br>Pt           | CU<br>63.55<br>47<br>Ag<br>107.87<br>79<br>Au                         | 2n<br>65.38<br>48<br>Cd<br>112.41<br>80<br>Ha           | Ga<br>69.72<br>49<br>In<br>114.82<br>81<br>Ti           | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82<br>Pb          | AS<br>74.92<br>51<br>Sb<br>121.75<br>83<br>Bi           | Se<br>78.96<br>52<br>Te<br>127.60<br>84<br>Po         | Br<br>79.90<br>53<br>I<br>126.90<br>85<br>At         | Kr<br>83.80<br>54<br>Xe<br>131.30<br>86<br>Rn           |
| <b>K</b><br>39.10<br>37<br><b>Rb</b><br>85.47<br>55<br><b>Cs</b><br>132.91 | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.33             | SC<br>44.96<br>39<br>Y<br>88.91<br>57<br>La<br>138.91              | 11<br>47.90<br>40<br><b>Zr</b><br>91.22<br>72<br>Hf<br>178,49 | V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta<br>180.95               | Cr<br>52.00<br>42<br>Mo<br>95.94<br>74<br>W<br>183.85 | Mn<br>54.94<br>43<br>Tc<br>97<br>75<br>Re<br>186,21               | Fe<br>55.85<br>44<br>Ru<br>101.07<br>76<br>Os<br>190.2  | CO<br>58.93<br>45<br>Rh<br>102.91<br>77<br>Ir<br>192.22               | NI<br>58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09 | CU<br>63.55<br>47<br>Ag<br>107.87<br>79<br>Au<br>196.97               | 2n<br>65.38<br>48<br>Cd<br>112.41<br>80<br>Hg<br>200.59 | Ga<br>69.72<br>49<br>In<br>114.82<br>81<br>Ti<br>204.37 | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82<br>Pb<br>207.2 | AS<br>74.92<br>51<br>Sb<br>121.75<br>83<br>Bi<br>208.98 | Se<br>78.96<br>52<br>Te<br>127.60<br>84<br>Po<br>209  | Br<br>79.90<br>53<br>I<br>126.90<br>85<br>At<br>210  | Kr<br>83.80<br>54<br>Xe<br>131.30<br>86<br>Rn<br>222    |
| K   39.10   37   Rb   85.47   55   Cs   132.91   87                        | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.33<br>88       | SC<br>44.96<br>39<br>Y<br>88.91<br>57<br>La<br>138.91<br>89        | 11<br>47.90<br>40<br><b>Zr</b><br>91.22<br>72<br>Hf<br>178.49 | V<br>50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b><br>180.95 | Cr<br>52.00<br>42<br>Mo<br>95.94<br>74<br>W<br>183.85 | Mn<br>54.94<br>43<br><b>Tc</b><br>97<br>75<br><b>Re</b><br>186.21 | F e<br>55.85<br>44<br>Ru<br>101.07<br>76<br>Os<br>190.2 | CO<br>58.93<br>45<br>Rh<br>102.91<br>77<br>Ir<br>192.22               | NI<br>58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09 | Cu<br>63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 2n<br>65.38<br>48<br>Cd<br>112.41<br>80<br>Hg<br>200.59 | Ga<br>69.72<br>49<br>In<br>114.82<br>81<br>Ti<br>204.37 | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82<br>Pb<br>207.2 | AS<br>74.92<br>51<br>Sb<br>121.75<br>83<br>Bi<br>208.98 | Se<br>78.96<br>52<br>Te<br>127.60<br>84<br>Po<br>209  | Br<br>79.90<br>53<br>I<br>126.90<br>85<br>At<br>210  | Kr<br>83.80<br>54<br>Xe<br>131.30<br>86<br>Rn<br>222    |
| K   39.10   37   Rb   85.47   55   Cs   132.91   87   Er                   | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.33<br>88<br>Pa | SC<br>44.96<br>39<br>Y<br>88.91<br>57<br>La<br>138.91<br>89<br>▲ C | 11<br>47.90<br>40<br><b>Zr</b><br>91.22<br>72<br>Hf<br>178.49 | V<br>50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b><br>180.95 | Cr<br>52.00<br>42<br>Mo<br>95.94<br>74<br>W<br>183.85 | Mn<br>54.94<br>43<br><b>Tc</b><br>97<br>75<br><b>Re</b><br>186.21 | F e<br>55.85<br>44<br>Ru<br>101.07<br>76<br>Os<br>190.2 | CO<br>58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b><br>192.22 | NI<br>58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09 | CU<br>63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 2n<br>65.38<br>48<br>Cd<br>112.41<br>80<br>Hg<br>200.59 | Ga<br>69.72<br>49<br>In<br>114.82<br>81<br>Ti<br>204.37 | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82<br>Pb<br>207.2 | As<br>74.92<br>51<br>Sb<br>121.75<br>83<br>Bi<br>208.98 | Se<br>78.96<br>52<br>Te<br>127.60<br>84<br>Po<br>209  | Br<br>79.90<br>53<br>I<br>126.90<br>85<br>At<br>210  | Kr<br>83.80<br>54<br>Xe<br>131.30<br>86<br>Rn<br>222    |
| K   39.10   37   Rb   85.47   55   Cs   132.91   87   Fr   200             | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.33<br>88<br>Ra | SC<br>44.96<br>39<br>Y<br>88.91<br>57<br>La<br>138.91<br>89<br>AC  | <br>47.90<br>40<br><b>Zr</b><br>91.22<br>72<br>Hf<br>178.49   | V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta<br>180.95               | Cr<br>52.00<br>42<br>Mo<br>95.94<br>74<br>W<br>183.85 | Mn<br>54.94<br>43<br>Tc<br>97<br>75<br>Re<br>186.21               | F e<br>55.85<br>44<br>Ru<br>101.07<br>76<br>Os<br>190.2 | CO<br>58.93<br>45<br>Rh<br>102.91<br>77<br>Ir<br>192.22               | NI<br>58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09 | Cu<br>63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 2n<br>65.38<br>48<br>Cd<br>112.41<br>80<br>Hg<br>200.59 | Ga<br>69.72<br>49<br>In<br>114.82<br>81<br>Ti<br>204.37 | Ge<br>72.59<br>50<br>Sn<br>118.69<br>82<br>Pb<br>207.2 | AS<br>74.92<br>51<br>Sb<br>121.75<br>83<br>Bi<br>208.98 | Se<br>78.96<br>52<br>Te<br>127.60<br>84<br>PO<br>209  | Br<br>79.90<br>53<br>I<br>126.90<br>85<br>At<br>210  | Kr<br>83.80<br>54<br>Xe<br>131.30<br>86<br>Rn<br>222    |

## **Useful equations:**

$$E = E^o - \frac{0.0592}{n} \log Q$$

$$E^o = \frac{0.0592}{n} \log K$$

$$\Delta G = -nFE$$
$$\Delta G^{\circ} = -nFE^{\circ}$$

- F = 96500 C / mol = 96500 J / mol V
- $Charge(coul) = Current(amps) \times time(s)$

 $1 faraday = 1 mol e^- = 96500 coul$ 

## Answers:

1. 2  $\operatorname{BrO}_4^-$  + 2  $\operatorname{NH}_4^+$   $\rightarrow$   $\operatorname{Br}_2$  + 2  $\operatorname{NO}_2^-$  + 4  $\operatorname{H}_2^-$ O

2(a) Left beaker should be labeled: "Sn," and "Sn $^{+2}$ " The beaker on the right labeled "Ag" and "Ag $^{+}$ "

2(b) Electrons are flowing left to right through the wire and anions are flowing right to left through salt bridge.

- 2(c) Anode
- 2(d) Cathode
- 2(e)  $Sn | Sn^{+2}(1 M) | | Ag^{+}(1 M) | Ag^{"}$
- 2(f)  $\Delta G^0 < 0$
- 2(g) two
- 3(a) Ni<sup>+2</sup>
- 3(b) Co
- $3(c) \operatorname{Ni}^{+2} + \operatorname{Co} \rightarrow \operatorname{Ni}^{+2} + \operatorname{Co}^{+2}$
- 3(d) E<sup>o</sup> +0.02 v
- $3(e) \text{ K}_{c} = 4.74$
- $3(f) \Delta G^{0} = -3.86 \text{ kJ}$
- 3(g) E = 0.06 v
- $4.\ 579\ s$
- $5(a) [Ar] 4s^0 3d^7$
- 5(b) Cr<sup>3+</sup>
- 6. (a)  $Cr^{+6}$  (b)  $Ni^{+2}$
- 7(a) two chlorides 90 degrees apart
- 7(b) three chlorides 90 degrees apart
- 8. The carbon has a formal charge = -1 and oxygen +1. Donates through electron-rich carbon.
- 9. (a)  $PH_3$  is  $AB_3E$ , therefore a ligand (b  $SiH_4$  is  $AB_4$ , therefore not a ligand (c)  $PH_3$  is  $AB_2E_2$ , therefore a ligand
- 10. +2, +3, +2
- 11. paramagnetic
- 12. C
- 13. A, C, B
- 14. (a)  ${}^{210}_{85}At \rightarrow {}^{4}_{2}\alpha + {}^{206}_{83}Bi$  (b)  ${}^{199}_{79}Au \rightarrow {}^{0}_{-1}\beta + {}^{199}_{80}Hg$
- 15. (b) 20%