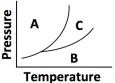
Review for the General Chemistry Final Exam Second Semester Part 1 of 3

Parts 1 – 8 of the review (Questions 1 – 96) covers first semester topics. If you are taking the 2^{nd} semester exam, start here. If you are taking the full year exam, start with the First Semester Review, Parts 1 – 3.

Part 9. Liquids and Solids

97. Which choice best indicates the degree of correctness of this statement? "Water at 50° C would boil if the opposing pressure were reduced to 90 mmHg by means of a vacuum pump."

Vapor Pressure of Substances in mmHg


temperature	0 °C	20 ^o C	50 ^o C	80 ^o C
n-propanol	3.4	14.5	87.2	376
water	4.6	17.6	92.0	355
turpentine	2.1	4.4	17.0	61.3

- (A) The statement is true.
- (B) The statement is probably true; additional data would be needed for a final decision.
- (C) It is impossible to judge the statement because the data are insufficient.
- (D) The statement is probably false; additional data would be needed for a final decision.
- (E) The statement is false.

98. The normal boiling point of SO₂ is 263.1 K and that of NH₃ is 239.7 K. At -40 °C which would you predict?

- (A) Ammonia has the greater vapor pressure.
- (B) Sulfur dioxide has the greater vapor pressure.
- (C) The vapor pressures would be equal.
- (D) The vapor pressure of NH_3 is 760 mmHg.
- (E) The relative vapor pressures are not predictable from the data given.

99. Consider the phase diagram of a pure compound. Which statement applies?

- (A) The path $\mathbf{A} \rightarrow \mathbf{C}$ represents sublimation.
- (B) Following the path A → B → C the compound would first liquefy and then vaporize.
- (C) If the compound is in state A, continued reduction of the pressure (at constant temperature) will cause it to melt.
- (D) None of these statements is correct.
- 100. A pure substance, above its melting point, is in a high pressure cylinder. Upon opening a valve on the cylinder a gas escapes. A pressure gauge on the cylinder shows a pressure of 56.5 atm. at 20 °C before opening the valve. After removing 10 ft³ of the gas, measured at standard conditions, the pressure in the cylinder reads 56.5 atm at 20 °C. The pressure gauge is in good working order. Which best explains these observations?
 - (A) The cylinder and contents will weigh the same before and after opening the valve.
 - (B) The substance in the cylinder is in the gaseous state.
 - (C) The substance in the cylinder is mostly in the liquid state.
 - (D) The substance in the cylinder has diatomic molecules when in the gaseous state.
 - (E) The substance in the cylinder is oxygen.
- 101. Carbon dioxide, CO_2 , in the form of dry ice would be classified as
 - (A) an ionic solid.(B) a polymeric solid.(C) a molecular solid.(D) a metallic solid.
- 102. A crystal of anhydrous KNO3 is made up of
 - (A) molecules of KNO₃.
 - (B) atoms of potassium, nitrogen, and 3 atoms of oxygen alternately spaced in the crystal.
 - (C) a geometrical pattern of potassium ions and nitrate ions in the crystal.
 - (D) potassium nitrate molecules alternately spaced with water molecules.
 - (E) molecules of KNO₃ and water combined into larger molecules.

103. Which group of substances is correctly arranged in order from the highest to the lowest melting point?

(A) HF > H ₂ > NaF	(C) NaF > H ₂ > HF
(B) HF > NaF > H ₂	(D) NaF > HF > H ₂

104. Arrange KCl, NH₃, and CH₄ in order of increasing boiling point.

(A) CH ₄ < KCl < NH ₃	(C) $NH_3 < KCI < CH_4$	
(B) CH ₄ < NH ₃ < KCl	(D) NH ₃ < CH ₄ < KCl	

105. The edge of a unit cube of an element **Y**, containing two atoms per unit cube, was found (by X–ray diffraction) to be 3.16×10^{-8} cm. The density of the metal is $19.35 \text{ g} \cdot \text{cm}^{-3}$. What is the approximate atomic molar mass of **Y**?

(A) 65.4	(B) 92.0	
(C) 184	(D) 238	

106. How many nearest neighboring sodium ions does each chloride ion have in NaCl(*s*)?

(A) 1	(B) 4
(C) 6	(D) 8

107. A particular compound has a crystal lattice with a cubic unit cell with atoms \bf{A} in the corner positions and atoms \bf{B} in the body–centered position. The simplest formula for the compound is

(A) A 4 B	(B) A 2 B
(C) AB	(D) A₈B

Part 10. Solutions

108. Which substance is most soluble in water?

(A) C ₆ H ₆	(C) CaCO ₃	
(B) C ₂ H ₅ OH	(D) CO ₂	

- 109. Liquid **Q** is a polar solvent and liquid **R** is a nonpolar solvent. On the basis of this information you would expect
 - (A) both liquids to be miscible with a third liquid **T**.
 - (B) liquid **Q** and H₂O to be miscible.
 - (C) liquid **Q** to be miscible with liquid **R**.
 - (D) CCl_4 to be immiscible with both **Q** and **R**.
 - (E) NaCl to be soluble in both Q and R.

- 110. A cellophane bag, which acts as a membrane permeable only to water, contains a 2 M sugar solution. The bag is immersed in a 1 M sugar solution. What will happen?
 - (A) The bag will soon contain more solution that will be are concentrated than 2 M.
 - (B) The bag will soon contain more solution that will be less concentrated than 2 M.
 - (C) The bag will lose sugar and the solution in it will become less concentrated.
 - (D) The bag will lose water and the solution in it will become more concentrated.
 - (E) There will be no change.
- 111. Which statement correctly expresses a relation between solubility and temperature?
 - (A) An increase in temperature increases the solubility of a gas in a liquid.
 - (B) The change of solubility with temperature is the same for all substances.
 - (C) The solubility of a liquid in a liquid is independent of temperature.
 - (D) The solubility of most solids in water increases with increasing temperature.
 - (E) The solubility of most solids in water decreases with increasing temperature.
- 112. The solubility of a substance is 60 g per 100 mL water at 15 °C. A solution of the same substance is prepared by dissolving 75 g per 100 mL water at 75 °C and then is cooled slowly to 15 °C without any solid separating. The solution is
 - (A) supersaturated at 75 °C.
 - (B) supersaturated at 15 °C.
 - (C) unsaturated at 15 °C.
 - (D) saturated at 15 °C.
- 113. If 0.400 g of a substance R is dissolved in 100 g of liquid Q, what is the molality of the solution? Given: Molar mass of R = 80.0 α·mol⁻¹

(A) 4.00 x 10 ⁻³ <i>m</i>	(C) 5.00 x 10 ⁻² <i>m</i>
(B) 5.00 x 10 ⁻³ m	(D) 4.00 x 10 ⁻¹ <i>m</i>

114. What mass of water is needed to dissolve 292.5 g of NaCl to produce a 0.25 *m* aqueous solution? Given: Molar mass of NaCl = 58.5 g mol^{-1}

(A) 20 kg	(B) 5.0 kg	
(C) 0.80 kg	(D)	0.050 kg

115. What is the mole fraction of water in 200. g of 95% (by mass) ethanol, C₂H₅OH?

Given: Molar mass of $C_2H_5OH = 46.0 \text{ g mol}^{-1}$

(A) 0.050	(B) 0.12
(C) 0.56	(D) 0.88

116. Which aqueous solution has the *smallest* freezing point depression?

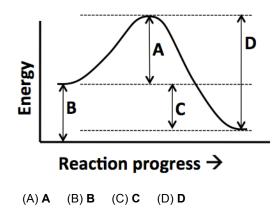
- (B) 0.2 *m* CH₃OH (D) 0.2 *m* K₃PO₄
- 117. A 2.00-g sample of a nonelectrolyte is dissolved in 100 g H₂O.
 If the resulting solution freezes at
 0.186 °C, what is the molar mass of the compound?

Molal Freezing Point Constant
$K_{\rm f}$ for water = 1.86 °C m^{-1}

(A) 18.6 g mol ⁻¹	(B) 20.0 g mol ⁻¹
(C) 186 g mol ^{–1}	(D) 200 g mol ⁻¹

118. What is the molar mass of a nonvolatile molecular solute if 120 g of it dissolved in 500 g of water causes the solution to boil at 101.04 °C at

atmospheric pressure?


	Molal Boiling Point Constant	
	K _b for water =	0.52 °C <i>m</i> ^{−1}
(A	∧) 60 g mol ^{−1}	(B) 120 g mol ⁻¹

- (C) 240 g mol⁻¹ (D) 300 g mol⁻¹
- 119. Assuming ideal behavior, what is the vapor pressure of a solution of 16.0 mol of carbon tetrachloride and 4.00 mol of dioxane at 23 °C?

	Vapor Pressu	res at 23 °C
	carbon tetrachloride	100. mmHg
	dioxane	38.0 mmHg
(A	() 50.4 mmHg	(C) 74.2 mmHg
(E	3) 62.8 mmHg	(D) 87.6 mmHg

Part 11. Kinetics

- 120. A change in temperature from 10 °C to 20 °C is found to double the rate of a given chemical reaction. How did this change affect the reacting molecules?
 - (A) It doubled their average velocity.
 - (B) It doubled their average energy.
 - (C) It doubled the number of collisions per second.
 - (D) It doubled the proportion of molecules possessing at least the minimum energy required for the reaction.
- 121. The rate equation for a chemical reaction is determined by
 - (A) theoretical calculations.
 - (B) measuring reaction rate as a function of concentration of reacting species.
 - (C) determining the equilibrium constant for the reaction.
 - (D) measuring reaction rates as a function of temperature.
- 122. The value of the rate constant of a reaction can generally be expected to
 - (A) be independent of temperature.
 - (B) increase with increasing temperature.
 - (C) decrease with increasing temperature.
 - (D) decrease with increasing temperature only if the reaction is exothermic.
- 123. Which line in the diagram represents the activation energy for a forward reaction?

124. The rate law for the reaction

$A + B \rightarrow C + D$

is first order in [**A**] and second order in [**B**]. If [**A**] is halved and [**B**] is doubled, the rate of the reaction will

- (A) remain the same.
- (B) be increased by a factor of 2.
- (C) be increased by a factor of 4.
- (D) be increased by a factor of 8.
- 125. In a chemical reaction involving the formation of an intermediate activated complex, which step must always be exothermic?
 - (A) Reactants \rightarrow products
 - (B) Products \rightarrow reactants
 - (C) Reactants \rightarrow activated complex
 - (D) Products \rightarrow activated complex
 - (E) Activated complex \rightarrow products
- 126. The gas–phase reaction, $A_2 + B_2 \rightarrow 2AB$, proceeds by bimolecular collisions between A_2 and B_2 molecules. If the concentrations of both A_2 and B_2 are doubled, the reaction rate will be changed by a factor of
 - (A) $\frac{1}{2}$ (B) 2 (C) 3 (D) 4 (E) $2^{\frac{1}{2}}$
- 127. The best *experimental* evidence for the assertion that molecules of higher-thanaverage kinetic energy are involved in chemical reactions is that
 - (A) all chemical reactions increase in rate by a increase in temperature.
 - (B) at the same temperature light molecules have a higher average velocity than heavy molecules.
 - (C) collision between molecules will not result in reaction unless enough energy is available to activate the particles.
 - (D) an increase in temperature causes an increase in the rate.
 - (E) a large rise in the average kinetic energy of molecules is caused by a small rise in temperature.

128. Given that

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

the forward reaction is proceeding at a certain rate at some temperature and pressure; when the pressure is increased, we may expect for the forward reaction

- (A) a greater rate of reaction and a greater yield of SO₃ at equilibrium.
- (B) a greater rate of reaction and the same yield of SO₃ at equilibrium.
- (C) a lesser rate of reaction and a lesser yield of SO₃ at equilibrium.
- (D) a lesser rate of reaction and a greater yield of SO₃ at equilibrium.
- (E) no change in rate or yield.
- 129. The addition of a catalyst in a chemical reaction
 - (A) increases the concentration of products at equilibrium.
 - (B) increases the fraction of reactant molecules with a given kinetic energy.
 - (C) provides an alternate path with a different activation energy.
 - (D) lowers the enthalpy change in the overall reaction.
- 130. A catalyst will
 - (A) alter the pathway (mechanism) of a chemical reaction.
 - (B) increase ΔH for the reaction.
 - (C) decrease ΔH for the reaction.
 - (D) decrease Ea for the forward reaction only
- 131. The following mechanism has been proposed for the formation of ethylbenzene:

 $CH_3CH_2Br + AlBr_3 \rightarrow AlBr_4^- + CH_3CH_2^+$

 $CH_3CH_2^+ + C_6H_6 \rightarrow C_6H_6CH_2CH_3^+$

 $C_6H_6CH_2CH_3 + AIBr_4^- \rightarrow$

 $AIBr_3 + HBr + C_6H_5CH_2CH_3$

Which substance serves as the catalyst?

(A) $AIBr_3$ (C) $CH_3CH_2^+$

(B) $AIBr_4^-$ (D) $C_6H_6CH_2CH_3^+$

132. The table presents data for the reaction:

$$2 H_2(g) + 2 NO(g) \rightarrow 2 H_2(g) + 2 N_2(g)$$

The temperature of the reaction is constant. The initial rate is in arbitrary units.

Ex	Init. Conc. [NO] _o *	Init. Conc. [H ₂] _o *	Initial rate ∆[N 2]/ ∆t
Ι	6.0 mol/L	1.0 mol/L	18.0
П	6.0	2.0	36.0
Ш	1.0	6.0	3.0
IV	2.0	6.0	12.0

* x 10⁻³ mol/L

What is the rate law for this reaction?

- (B) rate = $k_1 [H_2]^2 [NO]^2$
- (C) rate = $k_1 [H_2]^2 [NO]$
- (D) rate = $k_1 [H_2] [NO]^2$
- 133. The reaction 2 \mathbf{A} + 2 $\mathbf{B} \rightarrow \mathbf{C}$ + \mathbf{D} proceeds by this mechanism:
 - Step 1. 2 $\mathbf{A} \rightarrow \mathbf{A}_2$ (equilibrium)
 - Step 2. $A_2 + B \rightarrow X + C$ (rate determining)
 - Step 3. $X + B \rightarrow D$ (rapid)

The rate equation for the reaction is

- (A) rate = *k*[A] [B]
- (B) rate = $k[A]^2 [B]^2$
- (C) rate = $k [A]^2 [B]^2 [C]^{-1} [D]^{-1}$
- (D) rate = $k[A]^2$ [B]
- 134. Substance A undergoes a first order reaction A → B with a half life of 20 min at 25 °C. If the initial concentration of A in a sample is 1.6 M, what will be the concentration of A after 80 min?

(A) 0.40 M	(B) 0.20 M
(C) 0.10 M	(D) 0.050 M

135. The rate law for a first order reaction has the form

(A) rate = k	(C) rate = <i>k</i> [A] ²
(B) rate = k [A]	(D) rate = k [A] [B]

136. For the reaction $\mathbf{A} + 2 \mathbf{B} \rightarrow \mathbf{AB}_2$, given this data:

Expt.	Init. Conc. [A] _O (mol/L)	Init. Conc. [B] _O (mol/L)	Initial rate ∆[AB 2]/ ∆t
1	0.10	0.10	0.0090
2	0.20	0.10	0.036
3	0.10	0.20	0.018


What is the rate equation?

(A) rate = k [A] [B] (B) rate = k [A]² [B] (C) rate = k [A] [B]² (D) rate = k [A]² [B]²

137. For the reaction

 $2H_2O_2 \rightarrow 2H_2O + O_2$

which plot confirms that the rate is first order with respect to H_2O_2 ?

138. The decomposition of hydrogen peroxide in the presence of iodide ion is believed to occur via the mechanism

 $H_2O_2(aq) + I^-(aq) \rightarrow H_2O(I) + IO^-(aq)$

 $H_2O_2(aq) + IO^{-}(aq) \rightarrow H_2O(I) + O_2(g) + I^{-}(aq)$

In this mechanism, I⁻(aq) is

(A) a catalyst.

- (B) a reactant in the overall reaction.
- (C) the activated complex.
- (D) a product of the overall reaction.

139. Consider the reaction:

 $2 \operatorname{NO}_2(g) + F_2(g) \rightarrow 2 \operatorname{NO}_2F(g)$

A proposed mechanism for this reaction is

$$NO_2 + F_2 \longrightarrow NO_2F + F$$
 (slow)

$$NO_2 + F \iff NO_2F$$
 (fast)

What is the rate law for this mechanism?

(D) rate = $k [NO_2] [F]$

Part 12. Equilibrium

- 140. In which reaction will an increase in total pressure at constant temperature favor formation of the products?
 - (A) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - (B) $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$
 - (C) 2 NO(g) + O₂(g) \rightarrow 2 NO₂(g)
 - $(D) \operatorname{COCl}_2(g) \xleftarrow{} \operatorname{CO}(g) + \operatorname{Cl}_2(g)$

141. At constant temperature, an increased pressure applied to the equilibrium system

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

will produce what change?

- (A) increase the concentration and amount of $\ensuremath{\mathsf{NH}}_3$
- (B) increase the concentration and amount of $\ensuremath{\mathsf{H}_2}$
- (C) reduce the partial pressure of NH3
- (D) cause crystallization of NH₃
- 142. The equilibrium constant for the gaseous reaction

$C + D \rightarrow E + 2 F$

Is 3.0 at 50 $^{\circ}$ C. In a 2.0 L flask at 50 $^{\circ}$ C are placed 1.0 mol of **C**, 1.0 mol of **D**, 1.0 mol of **E**, and 3.0 mol of **F**. Initially, the reaction will

- (A) proceed at equal rates in both directions.
- (B) proceed more rapidly to form E and F.
- (C) proceed more rapidly to form C and D.
- (D) not occur in either direction.

143. Consider this reaction.

$$NO(g) + CO(g) \rightarrow$$

$$\frac{1}{2}N_2(g) + CO_2(g) \Delta H = -374 \text{ kJ}$$

The conditions of temperature and pressure that favor the formation of CO_2 are

- (A) high T and high P.
- (B) high T and low P.
- (C) low T and high P.
- (D) low T and low P.
- 144. If the following reaction is carried out at constant volume, the concentration of O₂ at equilibrium will increase if

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g) \quad \Delta H = -198 \text{ kJ}$

- (A) SO₂ is added to the system.
- (B) SO₃ is added to the system.
- (C) the temperature of the system is lowered.
- (D) an inert gas is added to the system.
- 145. At 298 K the equilibrium constant for

 $H_2(g) + \frac{1}{2}O_2(g) \Longrightarrow H_2O(I)$

Compound	ΔG°_{f} (kJ/mol)
H ₂ O(I)	-237
H ₂ O(g)	-229

- (A) is larger than the K_{eq} for $H_2(g) + \frac{1}{2}O_2(g)$ \longleftrightarrow $H_2O(g)$
- (B) will have a value of 1.0 at equilibrium.
- (C) cannot be computed since data on O_2 and H_2 are not provided.
- (D) will have the same value as the K_{eq} for H₂(g) + $\frac{1}{2}O_2(g) \iff H_2O(g)$
- 146. Which factor would cause a change in the equilibrium constant, K_c , for this reaction?

 $2 \operatorname{NOCI}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g)$

- (A) adding NO(g)
- (B) decreasing the volume of the reaction vessel
- (C) cooling the system
- (D) adding an inert gas

147. If the system

 $H_2(g) + I_2(g) = 2 HI(g)$

is initially at equilibrium, the amount of HI present in the equilibrium mixture at constant temperature could be increased by

- (A) increasing the concentration of H₂ present.
- (B) increasing the pressure on the mixture.
- (C) adding a catalyst.
- (D) lowering the concentration of I₂.
- (E) increasing the volume of the reaction vessel.
- 148. In the equilibrium

 $HS^- + H_2O \implies 2 H_3O^+ + S^{2-}$

the addition of what ion would effectively *increase* the S^{2-} concentration?

(A) H ₃ O ⁺	(B) Br⁻
(C) Cl⁻	(D) OH⁻
(E) Na ⁺	

- 149. Which is a proper description of chemical equilibrium?
 - (A) The frequencies of reactant and of product collisions are identical.
 - (B) The concentrations of products and reactants are identical.
 - (C) The velocities of product and reactant molecules are identical.
 - (D) Reactant molecules are forming products as fast as product molecules are reacting to form reactants.
 - (E) The numbers of moles of reactants and products are equal.
- 150. The value of the equilibrium constant *K* for a reaction at equilibrium is altered by

(A) changing the effective concentration of reactants.

(B) changing the effective concentration of products.

- (C) changing the temperature.
- (D) adding a catalyst.
- (E) adding water.

151. In which gas reaction would a change in pressure have no appreciable effect upon the composition of the equilibrium mixture?

$$(A) H_2 + I_2 \rightarrow 2 HI$$

(B) $2 \operatorname{SO}_2 + \operatorname{O}_2 \rightarrow 2 \operatorname{SO}_3$

(C) 4 HCl + $O_2 \rightarrow 2 Cl_2 + 2 H_2O$

(D) N₂ + 3 H₂
$$\rightarrow$$
 2 NH₃

(E) 2 NO + O₂
$$\rightarrow$$
 2 NO₂

152. Given the exothermic reaction:

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) \Delta H = -92.1 kJ$

At 400 K, the equilibrium constant is 0.53. At 800 K, what is the value of the equilibrium constant?

(A) 0.53

- (B) greater than 0.53
- (C) less than 0.53

(D) dependent on the concentration of ammonia in the mixture.

153. Into an empty vessel COCl₂(g) is introduced at 1.0 atm pressure whereupon it dissociates until equilibrium is established:

 $2 \operatorname{COCl}_2(g) \rightarrow C(\operatorname{graphite}) + \operatorname{CO}_2(g) + 2 \operatorname{Cl}_2(g)$

If **x** represents the partial pressure of $CO_2(g)$ at equilibrium, what is the value of the equilibrium constant, K_p ?

(A)
$$2x^3 / (1.0 - 2x)^2$$
 (C) $4x^3 / (1.0 - 2x)^2$
(B) $4x^4 / (1.0 - 2x^2)$ (C) $4x^3 / (1.0 - x)^2$

154. Calculate K_{eq} in terms of molar concentration for the reaction

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

when the equilibrium concentration are: $N_2 = 0.020$ M, $H_2 = 0.010$ M, and $NH_3 = 0.10$ M.

$$\begin{array}{ll} \text{(A) } 2.0 \times 10^{-6} & \text{(B) } 5.0 \times 10^{3} \\ \text{(C) } 5.0 \times 10^{5} & \text{(D) } 5.0 \times 10^{7} \end{array}$$

155. A mixture of 2.0 mol of CO(g) and 2.0 mol of $H_2O(g)$ was allowed to come to equilibrium in a I L flask at a high temperature. If $K_c = 4.0$, what is the molar concentration of $H_2(g)$ in the equilibrium mixture?

 $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$

(A) 1.0 (B) 0.67 (C) 0.75 (D) 1.3

156. The equilibi conversion	rium constant	<i>K</i> p for the		06. C 07. C
butane(g) \rightarrow isobutane(g)				08. B 09. B
is 2.54 at 25 ° allowed to con pressure of iso mixture will be	ne to equilibri obutane in the	um, the partial	1 1 1	10. B 11. D 12. B 13. C
(A) 0.390 atm	(C) 1.65 atm	1	14. A
(B) 0.720 atm	(D) 2.54 atm	-	15. B 16. B
157. A 1.20-L fla mixture of 0.0 and 0.0143 mo equilibrium co	168 mol of N ₂ ol of NH ₃ . Ca	, 0.2064 mol of H ₂ Iculate the	1 1 1 1	17. D 18. B 19. D 20. D 21. B
N ₂ (g) + 3 H ₂ (g) →	▶ 2 NH ₃ (g)	1	22. B
(A) 1.38	(B)) 1.99		23. A 24. B
(C) 4.12	(D) 4.96		25. E
158. At a certain constant for th		the equilibrium	1	26. D 27. D 28. A
21	$H(g) \rightarrow H_2(g)$) + I ₂ (g)		29. C 30. A
	luced when o	er of moles of ne mole of HI is is temperature.	1 1	31. A 32. D 33. D
(A) 0.41	(B)) 0.25		34. C 35. B
(C) 0.29	(D)3.45		36. В
studied at five and the equilit At which temp	widely differe prium constan erature will th version of A a	and B to C and D ,	1 1 1 1 1	37. D 38. A 39. C 40. C 41. A 42. C
K at T ₁	1 x 10 ⁻²			43. C 44. B
K at T ₂	2.25		-	45. A
K at T ₃	1.0			46. C
K at T ₄	81			47. A 48. D
K at T ₅	0.40			49. D
(A) <i>T</i> ₁	(B) <i>T</i> ₂	(C) <i>T</i> ₃		50. C
(D) <i>T</i> ₄	(E) <i>T</i> ₅			51. A 52. C
-			1	53. C
Answers:				54. C 55. D
97. A				56. B
98. A 99. D			1	57. B
100. C				58. C 59. D
101. C				

Please notify Dr Mattson
(brucemattson@creighton.edu) of any
mistakes or problems with this review.

- 101. C 102. C 103. D 104. B 105. C