Review for the General Chemistry Exam Second Semester Part 2 of 3

Part 12. Acid & Base Equilibria:

- 160. According to the Brønsted–Lowry definition, which chemical species can function **both** as an acid and as a base?
 - (A) CI^{-} (B) SO_4^{2-} (C) NH_4^{+}

(D) HCO3⁻ (E) H3O⁺

161. Which of these compounds is correctly described or classified?

- (A) NH₃ a weak acid in water
- (B) CaS a salt of a weak base and a strong acid
- (C) SO3 the hydrate of sulfuric acid
- (D) NaOH a strong base
- (E) $CuSO_4 \cdot 5H_2O$ the hydride of $CuSO_4$

162. In the reaction

 $CN^- + H_2O \rightarrow HCN + OH^-$

which is an acid-base conjugate pair?

(A) H_2O and HCN (C) CN^- and H_2O

(B) H₂O and OH⁻ (D) HCN and OH⁻

163. Which species can act either as an acid or as a base in aqueous solution?

(A) HCO3 ⁻	(B) HNO ₂
(C) HIO ₄	(D) H ₃ PO ₄

164. The conjugate acid of HPO₄²⁻ is

(A) PO ₄ ³⁻	(B) H ₂ PO ₄ ⁻	(C) H ₃ PO ₄
(D) H ₃ O ⁺	(E) P ₂ O ₅	

- 165. Given that HX is a stronger Brønsted acid than HY in aqueous solution, which is true of a 1 M solution of NaX?
 - (A) It is less basic than a 1 M solution of NaY.
 - (B) It is more basic than a 1 M solution of NaY.
 - (C) It yields a neutral solution.
 - (D) It is more concentrated than a I M solution of NaY.
- 166. Which of these species is *most* likely to be a Lewis acid and is also *least* likely to be a Brønsted acid?

(A) NH4 ⁺	(B) BF3
----------------------	---------

(C) H₂O (D) OH⁻

- 167. According to the Lewis definition, an acid is a species
 - (A) having a hydrogen ion.
 - (B) donating a pair of electrons.
 - (C) accepting a pair of electrons.
 - (D) accepting a hydrogen ion.
- 168. HCl is a strong acid. What is the pH of 200 mL of 0.002 M HCl?

(A) 2.0	(B) 2.7
(C) 3.4	(D) 4.0

169. What is the pH of a 0.01 M NaOH solution?

(A) 10 ⁻¹²	(B) 12	(C) -12
(D) 2	(E) -2	

170. When 50. mL of 0.1 M HCl is mixed with 50 mL of 0.20 M NaOH, the resulting hydronium ion concentration will be

(A) 0.050 M.	(B) 0.10 M.
(C) 0.20 M.	(D) 1 x 10 ⁻⁷ M.
(E) none of these	

- 171. Which series is the correct order of decreasing acid strength for each group of
 - acids? (A) H₂S > H₂Te > H₂Se > H₂O

(B)
$$HCIO_3 > HCIO_4 > H_2SO_4 > HNO_3$$

- (C) $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$
- (D) HF > HCl > HBr > HI
- 172. Which particles are present in the greatest number in a dilute sulfuric acid solution?

(A) H ₂ SO ₄ molecules	(D) H ₃ O ⁺ ions

(B) HSO₄⁻ ions (E) OH⁻ ions

(C) SO₄²⁻ ions

- 173. Which statement is a logical inference from the fact that a 0.10 M solution of potassium acetate, $KC_2H_3O_2$, is less alkaline than a 0.10 M solution of potassium cvanide. KCN?
 - (A) Hydrocyanic acid is a weaker acid than acetic acid.
 - (B) Hydrocyanic acid is less soluble in water than acetic acid.
 - (C) Cyanides are less soluble than acetates.
 - (D) Acetic acid is a weaker acid than hydrocyanic acid.

- 174. What is the set of products expected from the hydrolysis of CN⁻ ion?
 - (A) HCN and $OH^{-}(C) CN^{-}$ and $H_{2}O$
 - (B) HCN and H^+ (D) HCN and H_2O

175. Which salt reacts with water (hydrolyzes) to produce a basic solution?

(A) NaC ₂ H ₃ O ₂	(C) NaNO ₃
(B) NH ₄ Cl	(D) BaSO₄

176. In titrating NH₃(*aq*) with 0.1 M HCl, the equivalence point in pH units will be

(A) lower than 7 due to hydrolysis of NH_4^+

- (B) lower than 7 due to hydrolysis of Cl⁻
- (C) higher than 7 due to hydrolysis of NH_4^+
- (D) higher than 7 due to hydrolysis of Cl⁻

177. The new species formed by the hydrolysis of KCN are

- (A) H^+ ions, CN^- ions and OH^- ions.
- (B) CN⁻ ions and OH⁻ ions.
- (C) HCN molecules and KOH molecules.
- (D) HCN molecules and OH⁻ ions.
- (E) H_3O^+ ions and KOH molecules.

178. A 25.0-mL sample of 0.130 M HCl is mixed with 15.0 mL of 0.240 M of NaOH. The pH of the resulting solution will be nearest

(A) 2.1 (B) 7 (C) 11.9 (D) 13.0

179. A volume of 10.0 mL of 0.10 M H₃PO₄ was titrated with 0.10 M NaOH. The pH response to addition of various amounts of NaOH is shown. At point **A** the ratio of [H₃PO₄]/[H₂PO₄⁻] is

(A) 1 (B) 2 (C) 3 (D) 4

- 180. In the titration of 50.0 mL of 0.100 M benzoic acid (a monoprotic acid) with 50.0 mL of 0.100 M Na0H, the properties of the solution at the equivalence point will correspond exactly to the properties of
 - (A) a 0.100 M sodium solution.
 - (B) a 0.0500 M sodium hydroxide solution.
 - (C) a 0.0500 M benzoic acid solution.
 - (D) a 0.0500 M sodium benzoate solution.
- 181. Which pair constitutes a buffer in aqueous solution?
 - (A) HCl and NaCl
 - (B) NH₃ and NH₄Cl
 - (C) HBr and KBr
 - (D) HNO3 and NH4NO3
- 182. The addition of a small amount of acid or base will have very little effect on the pH value of a solution containing equal molar concentrations of
 - (A) NH₄Cl and NaCl
 - (B) NaOH and HCI
 - (C) NH₃ and NH₄Cl
 - (D) NaOH and NaCl
 - (E) $\mathsf{NH}_3\,$ and NaCl

183. Which gives an acidic solution in water?

(A) H ₂	(B) CH ₄	(C) NH ₃
(D) CaO	(E) SO ₂	

184. The amide ion, NH₂⁻, is a stronger base than the hydroxide ion, OH⁻. Which reaction will occur if sodium amide is dissolved in water?

(A) $NH_2^{-}(aq) + H_2O(I) \rightarrow H_3O^{+}(aq) + NH^{2-}(aq)$

(B) $NH_2^{-}(aq) + H_2O(l) \rightarrow NH_2OH(aq) + H^{-}(aq)$

(C) $NH_2^{-}(aq) + H_2O(I) \rightarrow OH^{-}(aq) + NH_3(aq)$

(D) $NH_2^{-}(aq) + H_2O(I) \rightarrow$ no reaction

185. What is the [OH⁻] of a solution which is 0.18 M in ammonium ion and 0.10 M in ammonia? [$K_{\rm b}$ for Ammonia = 1.8 x 10⁻⁵]

(A)
$$1.3 \times 10^{-3}$$
 (C) 1.3×10^{-5}
(B) 1.0×10^{-3} (D) 1.0×10^{-5}

186. In pure water at 60 °C,

$$[H_3O^+] = [OH^-] = 3.1 \times 10^{-7} M.$$

It is reported that an aqueous solution at 60 °C has $[H_3O^+] = 1.0 \times 10^{-7}$ M. Such a solution is

(A) neutral.	(B) basic.
(C) acidic.	(D) impossible

187. The dissociation constant for monoprotic acid HX in water is 1.34×10^{-4} . What is the concentration of X⁻ ion in a 0.20 M solution of HX?

(A) 5.2 x 10 ⁻³	(C) 4.5 x 10 ⁻⁴
(B) 2.0 x 10 ⁻⁴	(D) 6.4 x 10 ⁻⁴

188. The dissociation constant for a weak base **B**OH in water was found to be 1.25×10^{-6} . What is the concentration of H⁺ in a 3.2 M solution of **B**OH?

(A) 2.0 x 10 ^{–3} M	(C) 1.6 x 10 ^{−11} M
(B) 4.0 x 10 ⁻⁶ M	(D) 5.0 x 10 ⁻¹² M

189. When 0.10 mol of a weak acid HA was diluted to one liter, experiment showed the acid to be 1% dissociated. What is the acid dissociation constant, K_a ?

 $HA + H_2O \rightarrow H_3O^+ + A^-$

(A) 1 x 10 ⁻⁶	(C) 1 x 10 ⁻³
(B) 1 x 10 ⁻⁵	(D) 1 x 10 ⁵

190. What is the H₃O⁺ of a solution which is 0.2 M in NaC₂H₃O₂ and 0.1 M in HC₂H₃O₂? [$K_a = 1.85 \times 10^{-5}$]

(A) 9.0 x 10 ⁻⁷	(C) 3.6 x 10 ⁻⁶
(B) 1.8 x 10 ⁻⁶	(D) 9.0 x 10 ⁻⁶

191. A 0.10 M C₆H₅COOH solution has a pH of2.59. What is the K_a of this acid?

(A) 6.6 x 10 ⁻⁶	(C) 2.6 x 10 ⁻³
(B) 6.6 x 10 ⁻⁵	(D) 2.6 x 10 ⁻²

192. What is the pH of a 0.1 M NaF solution? [K_a for HF = 7 x 10⁻⁴]

(A) 2.1 (B) 5.9 (C) 8.1 (D) 9.1

193. What is the hydrogen ion concentration of a buffer solution containing 0.10 M NO₂ and 0.20 M HNO₂? [$K_a = 4.5 \times 10^{-4}$]

(A) 2.2 x 10 ⁻⁴ M	(C) 9.0 x 10 ⁻⁴ M
(B) 4.5 x 10 ⁻⁴ M	(D) 9.5 x 10 ⁻³ M

194. Assume that standardized aqueous solutions of each of these are available.

Substance	Ionization Constant
NaC ₂ H ₃ O ₂	$K_{\rm b}$ = 5.6 x 10 ⁻¹⁰
RNH ₃ CI	<i>K</i> _a = 5.6 x 10 ⁻¹⁰
RNH ₂	<i>K</i> _b = 1.8 x 10 ⁻⁵
HC ₂ H ₃ O ₂	$K_{a} = 1.8 \times 10^{-5}$

A buffer with a desired pH is 5.0 would be conveniently prepared by appropriate mixtures of

- (A) NaC₂H₃O₂ and HC₂H₃O₂
- (B) RNH₃Cl and RNH₂
- (C) HC₂H₃O₂ and water
- (D) HC₂H₃O₂ and RNH₂

Part 13. Solubility Equilibria:

195. The addition of solid Na₂SO₄ to an aqueous solution in equilibrium with solid BaSO₄ will cause

(A) no change in $[Ba^{2+}]$ in solution.

- (B) more BaSO₄ to dissolve.
- (C) precipitation of more BaSO₄.
- (D) an increase in the K_{sp} of BaSO₄.
- 196. The solubility of BaCO₃ is 7.9 x 10^{-3} g·L⁻¹. Calculate the solubility product, K_{sp} ignoring hydrolysis. [Molar Mass: BaCO₃ 197 g mol⁻¹]

(A) 1.6 x 10 ^{−2}	(C) 4.0 x 10 ⁻⁵
(B) 1.6 x 10 ⁻⁹	(D) 6.2 x 10 ⁻⁵

197. Typical "hard" water contains about 2.0 x 10^{-3} mol of Ca²⁺ per liter. Calculate the maximum concentration of fluoride ion which could be present in hard water. [K_{sp} for CaF₂ = 4.0 x 10⁻¹¹]

(A) 1.4 x 10 ⁻⁴ M	(C) 4.0 x 10 ⁻³ M
(B) 2.0 x 10 ⁻³ M	(D) 2.0 x 10 ⁻⁸ M

198. What is $[OH^{-}]$ in a saturated solution of Mg(OH)₂ where $[Mg^{2+}] = 1.5 \times 10^{-5} M? [K_{sp} for Mg(OH)_{2} = 1.5 \cdot 10^{-11}]$

(A) 2.2 x 10 ⁻¹⁰ M	(C) 5.0 x 10 ⁻⁴ M
(B) 3.0 x 10 ⁻⁵ M	(D) 1.0 x 10 ⁻³ M

199 What is the conc	centration of Aa^+ in a 0.010	
M KCl solution sate	urated with AgCl? [K _{sp} for	Answ
AgCl = 1.8 ′ 10 ⁻¹⁰]	160 D
(A) 1.3 x 10 ^{−5} M	(C) 1.8 x 10 ⁻⁸ M	161. D
(7) 1.0 x 10 M	(0) 1.0 × 10 ⁻¹¹ M	162. B
(B) 1.0 X 10 ' M	(D) 1.8 X 10 ¹¹ M	163. A
200. If two salts. AX a	and BX ₂ , have the same K_{sp}	164. B
values of 4.0 x 10 ⁻	¹² at a given temperature	165. A
then	at a given temperature,	166 B
	ubilities in water are the	167. C
(A) their molar solu	idilities in water are the	168. B
		169. B
(B) the saits are m than in water.	ore soluble in 0.1 M Nax	170. E
(C) the molar solut than that of BX ₂	bility of AX in water is less	171. C 172. D
- (D) addition of Na	will not affect the	173. A
solubilities of the	e salts	174. A
		175. A
201. What is the mola	ar concentration of silver ion	176 \
in a solution contai	ining 1.3 x 10 ⁻⁴ M CrO ₄ ²⁻ ,	170. A 177 D
saturated with Ag ₂	CrO ₄ ?	178. C
$[K_{an} \text{ for AgaCrO}_4]$	$= 9 \times 10^{-12}$	179. A
[/\sp 101 /\g20104		180. D
(A) 1.3 x 10 ^{−16}		404 5
(B) 7 x 10 ⁻¹⁶		181. B
$(C) 0 \times 10^{-12}$		183 E
(C) 9 X 10		184. C
(D) 2.6 x 10 ⁻⁴		185. D
(E) 7 x 10 ^{–3}		
		186. B
202. What is the mola	ar solubility of lead sulfate in	107. A 188 D
$1.0 \times 10^{-9} \text{ M Na}_2\text{S}$	SO_4 ? [K_{sp} for PbSO ₄ = 1.8 x	189. B
10 ⁻⁸]		190. D
(A) 1.8 x 10 ⁻²	(C) 1.8 x 10 ^{−5}	101 P
(B) 1.3 x 10 ⁻⁴	(D) 5.0 x 10 ⁻⁶	191. B
(_)	(_)	193. C
		194. A
		195. C
		196 B
		197. A

nswers:

168.	B
169.	E
170.	C
172.	D
173.	A
174.	A
175.	A
176.	A
177.	D
178.	C
179.	A
180.	D
181.	B
182.	C
183.	E
184.	C
185.	D
186.	B
187.	A
188.	D
189.	B
190.	D
191.	B
192.	C
193.	C
194.	A
195.	C
196.	B
197.	A
198.	D
199.	C
200.	C
201.	D
202.	C

Please notify Dr Mattson
(brucemattson@creighton.edu) of any
mistakes or problems with this review.