EXAM ONE PART ONE

CHM 451 (INORGANIC CHEMISTRY)

DR. MATTSON 18 SEPTEMBER 2013 NAME:

Instructions: This exam has two parts. In Part One, only a pencil and molecular models may be used. When you have completed Part 1, turn it in and obtain Part Two. In Part Two, your data sheet (on the periodic table), a molecular model set, and a non-programmable calculator may be used.

1. (4 pts) Give the electron configuration for these species. You may use "core notation."

Sc	
1	
Fe ³⁺	
Pt ²⁺	

2. (2 p	ts) (a) Which 2+ ion has six 3d electrons?	(b)Which 3+ ion has three 3d electrons?
(a		(b)

4. (6 pts) Which has the higher ionization energy within each pair?

Ca or Sr	Mg or Al	Rb or I
Cr or Mo	Si or P	Zn or Ga
(6 pts) Which has the higher	electron affinity within each pair?	
B or C	C or N	Zn or Ga
S or Cl	l or Br	Mg or Al

6. (6 pts) True or False.

5.

- T F Electron affinities are generally exothermic.
- T F Ionization energies are generally exothermic.
- T F Anions are larger than cations in isoelectronic monatomic ions.
- T F Cations are generally paramagnetic, while anions are generally diamagnetic.
- T F Effective nuclear charge is used to explain periodic trends across the periodic table, but not used to explain periodic trends vertically within the table.
- T F Subsequent ionization energies become increasingly endothermic.

7. (2 pts) The energies for removal of an electron from Cl^- , Cl, and Cl^+ are 343, 1250, and 2300 kJ/mol, but not necessarily in that order. Is this order correct? If not, write the ionization energies in order for Cl^- , Cl, and Cl^+ .

[] Yes OR [] No, the order is :

8. (4 pts) Circle the largest ion within each pair

S²⁻ or Cl⁻ K⁺ or Ca²⁺ Sc³⁺ or Ti⁺ Fe²⁺ or Fe³⁺

9. (12 pts) Sketch the Lewis dot structure for each of the following. Give the ABE formula and shape.

Lewis dot structure	ABE formula	Geometric shape name
BrF₄⁻		
DE		
PH ₂ ⁻		
_		
NO _o -		
102		
CIO ₄ -		
XeO ₃		
1	1	1

10. (5 pts) The ion CNO⁻ could have any of these structures, all of which obey the octet rule. Assign formal charges to every atom in these nine structures in order to determine which drawings are most plausible. Circle the one(s) that meet with your approval.

11. (4 pts) The MO diagram for HCl is shown below.

- (a) Draw all necessary connecting lines between atomic and molecular orbitals
- (b) Populate atomic and molecular orbitals with the appropriate number of electrons.
- (c) Calculate the bond order for HCI.

Turn this in and receive Part 2. In Part 2, you can use your data sheet, a molecular model set, and a non-programmable calculator.

EXAM ONE PART TWO

CHM 451 (INORGANIC CHEMISTRY)

DR. MATTSON 18 SEPTEMBER 2013 NAME:

Instructions for Part 2: Show all work or provide complete explanations! You will receive credit for how you worked each problem as well as for the correct answer. Non-programmable calculators, your data sheet and a molecular model set are allowed during this portion of the exam. Illegible handwriting will not be graded. BOX YOUR ANSWERS!

12. (2 pts) Using Slater's rules, determine Z_{eff} for a 2p electron in:

Ne

Ν

13. (2 pts) Using Slater's rules, determine Z_{eff} for a 2p electron in:

O ²⁻			
Mg²⁺			

14. (2 pts) Using Slater's rules, determine Z_{eff} for a:

4s electron of Cu

3d electron of Cu

15. (6 pts) Predict the physical state of the following substances at room temperature (s, l, or g), based on what you know about intermolecular forces, and types of compounds. Some explanation is required for credit.

SO ₃ (MM = 80 g/mol)	CH ₂ (NH ₂) ₂ (MM = 45 g/mol)	SF ₆ (MM = 146 g/mol)
K ₂ SO ₄ (MM = 174 g/mol)	SiH ₄ (MM = 32 g/mol)	P ₄ S ₆ (MM = 316 g/mol)

16. (15 pts) Complete the table below.

	Identify the primary rotation axis, (e.g. C ₄)	Identify any other rotation axes, C _n , or enter "none"	Enter the number of vertical mirror planes, σ _v	Is there a horizontal mirror plane, ^σ h	Is there an inversion center, i	Point group
NF ₃ (AB ₃ E)				Yes No	Yes No	
SO ₃ (AB ₃)				Yes No	Yes No	
SO ₂ (AB ₂ E)				Yes No	Yes No	
CS ₂ (AB ₂)				Yes No	Yes No	
PF ₅ ⁻ (AB ₅ E)				Yes No	Yes No	

17. (10 pts) Sketch a molecular orbital diagram for the nitrosyl ion, NO⁺. Label all of the atomic and molecular orbitals and populate it accordingly. You can ignore sp-mixing.

- 1. What is the bond order?
- 2. Is this species diamagnetic or paramagnetic?
 - My checklist for awarding points:
 - 3. [] Are the atomic orbitals for N and O labeled?
 - 4. [] Do the atomic orbitals have appropriate relative energies?
 - 5. [] Are all molecular orbitals labeled (with σ and π designations)?
 - 6. [] Are the MOs linked to the appropriate atomic orbitals?
 - 7. [] Are there the correct number of electrons present?
 - 8. [] Are the MOs in correct order?
 - 9. [] Did you sketch the bonding MOs (with the lobe diagrams) correctly?
 - 10. [] Did you sketch the anti-bonding MOs (with the lobe diagrams) correctly?

18. (10 pts) If you were to construct a MO diagram for PF₅, you would start by creating a SALC set or orbitals for the fluorine atoms. Then you would use the D_{3h} character table to generate a reducible representation, Γ . You would next determine the irreducible components. The trigonal bipyramid is unusual in that the axial and equatorial positions are separate entities and you can work this problem as if it were two separate problems.

D _{3h}	Е	2C ₃	3 C ₂	σ_{h}	2S ₃	$3\sigma_v$		
A ₁ '	1	1	1	1	1	1		$(x^2 + y^2, z^2)$
A ₂ '	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x, y)	(x ² - y ² , xy)
A ₁ "	1	1	1	-1	-1	-1		
A ₂ "	1	1	-1	-1	-1	1	Z	
Ε"	2	-1	0	-2	1	0	R _x , R _y	(xz, yz)

(a) (3 pts) First, start with the two axial positions, determine Γ_{axial} and then resolve them into their irreducible components.

(b) (2 pts) What atomic orbitals on phosphorus would transform the same as the axial SALCs?

(c) (3 pts) Then repeat the process for the three equatorial positions, determining $\Gamma_{equitorial}$ and then resolving them into their irreducible components. You will find that one of the irreducible representations is used twice – once for the axial SALCs and once for the equatorial SALCs!

(d) (2 pts) What atomic orbitals on phosphorus would transform the same as the equatorial SALCs?

5 pt Bonus: Given that the atomic orbitals of fluorine are similar in energy to the 3s orbitals on P, and that the 3p and 3d orbitals on P are a bit higher in energy, construct a MO diagram for PF_5 . No partial credit.

Answers:

1. Sc [Ar] 4s² 3d¹; I [Kr] 5s² 4d¹⁰ 5p⁵; Fe³⁺ [Ar] 4s⁰ 3d⁵; Pt²⁺ [Xe] 6s⁰ 4f¹⁴ 5d⁸

2. (a) Fe⁺²; (b) Cr⁺³; 4. first row: Ca, Mg, I; second row: Cr, P, Zn ; 5. first row: C, C, Ga; second row: Cl, Br, Al

6. T F T F T T; 7. Ye	, the order is correct; 8.	. S ²⁻ , K ⁺ , Ti ⁺ , Fe	2 1
-----------------------	----------------------------	---	----------------

9. Lewis dot structure	ABE formula	Geometric shape name
BrF₄ [−]	AB ₄ E ₂	Square plane
PF ₅	AB ₅	Trigonal bipyramid
PH ₂ -	AB ₂ E ₂	Bent
NO ₂ -	AB ₂ E	Bent
CIO ₄ -	AB ₄	tetrahedral
XeO ₃	AB ₃ E	trigonal pyramid

10. the first two across the top row have the most favorable formal charges. The first one has FC = 0, 0, and -1 for N, C, and O, respectively. The second one (across the top) has FC = -1, 0, and 0 for N, C, and O, respectively. All of the other structures have at least one atom with a + or -2, which is not favorable compared to those with lower formal charges.

11. (c) The bond order for HCI = 2/2 = 1

12. (2 pts) Using Slater's rules, determine Z_{eff} for a 2p electron in:

N (1s)² (2s2p)⁵ S = 0.85 x 2 + 0.35 x 4 = 3.1; $Z_{eff} = 7 - 3.10 = 3.90$ Ne (1s)² (2s2p)⁸ S = 0.85 x 2 + 0.35 x 7 = 4.15; $Z_{eff} = 10 - 4.15 = 5.85$ O²⁻ (1s)² (2s2p)⁸ S = 0.85 x 2 + 0.35 x 7 = 4.15; $Z_{eff} = 8 - 4.15 = 3.85$ Mg²⁺ (1s)² (2s2p)⁸ S = 0.85 x 2 + 0.35 x 7 = 4.15; $Z_{eff} = 12 - 4.15 = 7.85$

4s electron of Cu $(1s)^2 (2s2p)^8 (3s3p)^8 (3d)^{10} (4s4p)^1$; S = 1.0 x 10 + 0.85 x 18 = 25.30 ; Z_{eff} = 29 - 25.3 = 3.70

3d electron of Cu $(1s)^2 (2s2p)^8 (3s3p)^8 (3d)^{10} (4s4p)^1$; S = 1.0 x 18 + 0.35 x 9 = 21.15 ; Z_{eff} = 29 - 21.15 = 7.85 15.

g/mol)		$CH_2(NH_2)_2$ (MM = 45 g/mo	SF6 (M	M = 146 g/mo	I)	
close to 1 liquid	00 g/mol;	Strong H-bonding (Predict: I mp ? bp = 83 °C	iquid)	Non-polar; predict gas or liquid Non-polar, bp = -64 °C		
$= 45 ^{\circ}\text{C}$	\ \	(MM - 22 s/mal)				
174 g/moi)	SIF14 (IVIIVI – SZ 9/1101)		P_4S_6 (MM = 316 g/mol)		
bild		Non-polar covalent-molecula	ar	High MM, predict solid, mp = 173		
		Predict gas; bp = -112 °C		oC		
			-			1
C ₃	none	3 σ _v	1	No	No	C _{3v}
C ₃	C ₂	3 σ _v	Y	′es	No	D _{3h}
C ₂	none	$2 \sigma_v \text{ or } \sigma_v + \sigma_d$		No	No	C _{2v}
C∞	C ₂	∞σ _v	∞σ _v Yes		Yes	D∞h
C ₄	C ₂	2 σ _v + 2 σ _d	I	No	No	C _{4v}
	g/mol) close to 1 liquid = 45 °C 174 g/mol blid C ₃ C ₃ C ₂ C _∞ C ₄	g/mol) close to 100 g/mol; liquid = $45 ^{\circ}\text{C}$ 174 g/mol) blid C_3 none C_3 C_2 C_2 none C_2 C_2 C_2 C_2	g/mol) close to 100 g/mol; liquid = 45 °C 174 g/mol) blid CH ₂ (NH ₂) ₂ (MM = 45 g/mol) Strong H-bonding (Predict: I mp ? bp = 83 °C SiH ₄ (MM = 32 g/mol) Non-polar covalent-molecula Predict gas; bp = -112 °C C ₃ none 3 σ_V C ₃ C ₂ 3 σ_V C ₂ none 2 σ_V or $\sigma_V + \sigma_d$ C _∞ C ₂ $\infty \sigma_V$ C ₄ C ₂ 2 $\sigma_V + 2 \sigma_d$	g/mol) $CH_2(NH_2)_2$ (MM = 45 g/mol)close to 100 g/mol;Strong H-bonding (Predict: liquid) mp ? bp = 83 °Ciquidmp ? bp = 83 °C174 g/mol)SiH4 (MM = 32 g/mol) Non-polar covalent-molecular Predict gas; bp = -112 °CImage: C_3 for the second	g/mol) $CH_2(NH_2)_2 (MM = 45 g/mol)$ $SF_6 (M)$ close to 100 g/mol;Strong H-bonding (Predict: liquid) mp ? bp = 83 °CNon-po Non-poiquid mp ? bp = 83 °CP4S_6 (I) High M Predict gas; bp = -112 °CP4S_6 (I) High M °C C_3 none $3 \sigma_V$ No C_3 C_2 $3 \sigma_V$ No C_2 none $2 \sigma_V \text{ or } \sigma_V + \sigma_d$ No C_{∞} C_2 $\infty \sigma_V$ Yes C_4 C_2 $2 \sigma_V + 2 \sigma_d$ No	g/mol) $CH_2(NH_2)_2 (MM = 45 g/mol)$ $SF_6 (MM = 146 g/mol)$ close to 100 g/mol; liquid = 45 °CStrong H-bonding (Predict: liquid) mp ? bp = 83 °CNon-polar; predict ga Non-polar, bp = -64 °174 g/mol) olidSiH4 (MM = 32 g/mol) Non-polar covalent-molecular Predict gas; bp = -112 °C $P_4S_6 (MM = 316 g/mol)$ High MM, predict soli °C C_3 C_3 C_2 none $3 \sigma_V$ $3 \sigma_V$ No No C_3 C_2 C_2 $\sigma_V \circ \sigma_V + \sigma_d$ No No C_2 C_4 C_2 $2 \sigma_V \circ \sigma_V + \sigma_d$ No Yes C_4 C_2 $2 \sigma_V + 2 \sigma_d$ No

17. 1. Bond order = 3; 2. Diamagnetic; 2. Is this species diamagnetic or paramagnetic?

18. (a) and (b)

D _{3h}	Е	2C ₃	3 C ₂	σ_{h}	2S ₃	$3\sigma_v$	
Г	2	2	0	0	2	2	

 Γ = A₁'+ A₂". In terms of orbitals on the phosphorus, the 3s and 3d_z² transform as A₁', and the 3p_z transforms as A₂".

(c) and (d)

D _{3h}	Е	2C ₃	3 C ₂	σ_{h}	2S ₃	$3\sigma_v$	
Γ	3	0	1	3	0	1	

 Γ = E'+ A₁'. In terms of orbitals on the phosphorus, the 3s and 3d_z² transform as A₁' (as above), and the doubly degenerate (3p_x, 3p_x) transforms as E', as does the doubly degenerate (3d_{xy}, 3d_x2-_y2).