Inorganic Exam 1 Chm 451 22 September 2009

Name:

Instructions. Always show your work where required for full credit.

17007		onou	your a		order e	requi	rea	, 0. , .	uu ere	<i></i>	
	ots) Element 11 odic properties		_						ım. Wł	nat do yo	ou predict for its
a.	Atomic size: D	armst	adtiun	n wou	ld be _				_ than	n platinu	ım.
b.	First ionizatio ionization ene					ı wou	ıld h	ave a	a		first
c.	Electron affinithan that of pl			dtium	would	d an e	elect	tron a	affinity	that is	
, -	ots) One element of the other th		_	-						ffinity m	nuch lower than
a.	titanium, nick	el, ars	senic, k	rypto	n						
b.	sodium, calciu	ım, ytt	rium, l	hafniı	ım						
c.	nickel, copper,	, zinc,	galliur	n							
	ots) In Period 2 nent before it:				nt tha C				first io	nization	energy than th
	ots) A 3 rd row el , 1817, 2745, 11										
		Na	Mg	Al	Si	P		\mathbf{S}	Cl	Ar	
5. (1 p	ot) Which alkal	i meta	ıl was r	nost r	eactiv	e wit	h wa	ater:	Li, Na	, or K?	
PbS		ner ele	ements	that a	also fo	rm sı	alfid	le and	d selen	ide mine	ral being galena erals, are called
7. (3 p	ots) Which spec	ies in	each se	equen	ce is t	he sn	nalle	est?			
a.	Si, P, S, Cl										
b.	P, As, Sb, Bi	i									
	V+2, V+3, V+5										

(6 pts) Use Slater	's rules to estimate the shield	ng felt by
b. a valence elec	tron on calcium	
a. a 3d electron	on copper	
(3 pts) Estimate t	he effective nuclear charge fel	t by a valence electron on fluorine.
. (6 pts) Write the	electron configuration using	core notation for
a. arsenic		
b. titanium		
c. Mn ⁺²		
	e best Lewis dot structure an	d give the ABE formula for each of these
NO ₃ -	$\mathrm{PF}_{3}\mathrm{O}$	$\mathrm{SF_4O}$
	a. a valence electron a. a 3d electron a. a 3d electron a. a 3d electron a. a 3d electron a. arsenic b. titanium c. Mn ⁺² a. (6 pts) Sketch the species:	b. titanium c. Mn ⁺² . (6 pts) Sketch the best Lewis dot structure and species:

12. (4 pts) Sketch two Lewis dot structures for sulfite: (a) Sketch the best one in which all atoms obey the octet rule and (b) Modify the sketch so that formal charges are optimized.

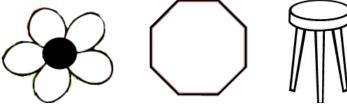
- 13. (3 pts) One species (compound or polyatomic ion) in each group *must* expand the octet on the central atom in order to satisfy the octet rule. Circle this compound in each of these groups.
 - a. PF₃, PCl₄⁺, AsF₅
 - b. BrCl₃, IF, ClO₃-
 - c. SO₂, SO₄-2, SF₄
- 14. (3 pts) One member of each group does not exist. Circle it.
 - a. FCl₃, FCl, ClF₃
 - b. NO_3 , NF_5 , NO_2
 - c. SeO₂, SeO₃, SeO₄
- 15. (8 pts) Predict the state of matter (solid, liquid or gas) for each of these species. The MM is given in each case:

 SO_3 (MM = 80 g/mol)

 $LiNO_3$ (MM = 69 g/mol)

t-butanol, $(CH_3)_3COH$ (MM = 74 g/mol)

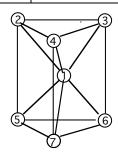
 NI_3 (MM = 395 g/mol)

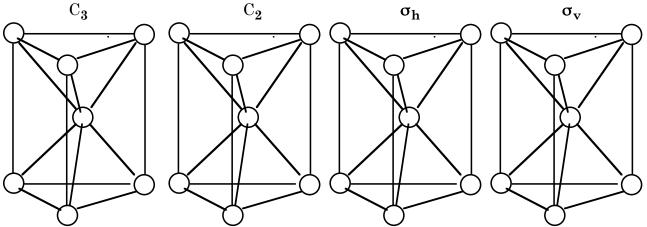

BN (network covalent) (MM = 24.8 g/mol)

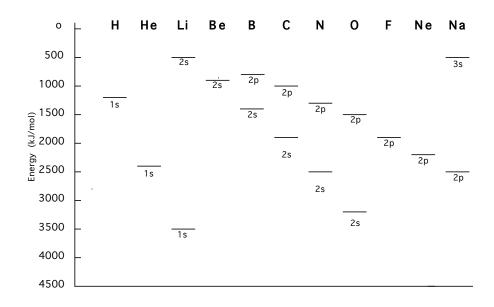
Os (AM = 190 g/mol)

 TeH_2 (MM = 130 g/mol)

 $\mathrm{CS}_2 \; (\mathrm{MM} = 76 \; \mathrm{g/mol})$


16. (18 pts) Consider the following common objects: a five petal flower (assume it is highly symmetric with the petals slightly directed towards viewer), an octagon, a 3-legged piano stool and a round-sided pencil.




Complete the table regarding the symmetry properties of these objects. Given that the point groups are all of the type C_{nv} or D_{nh} , provide the point group for each object.

Object	Principle rotation axis	Other rotation axes (list)	σ _h mirror plane	How many $\sigma_{ m v}$ mirror planes?	How many o _d mirror planes	Point group
Flower			Yes or No			
Hexagon			Yes or No			
Stool			Yes or No			
Pencil			Yes or No			

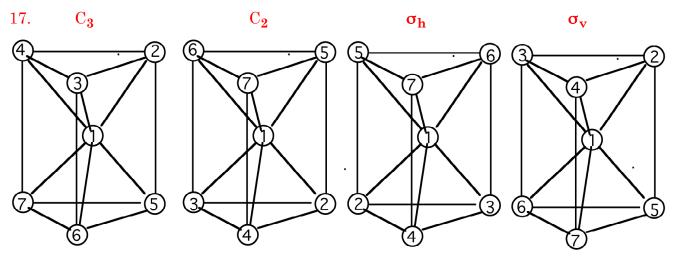

17. (8 pts) An unusual alternative to the octahedron is the trigonal bipyramid, shown at right. Molecules of this structure belong to the D_{3h} point group. Perform the following symmetry operations on the molecule by indicating by number the result of each operation. Perform each of these operations on the numbered version shown at right, not on your previous answer!

18. (9 pts) The first preparation of the diazinide ion. N_2^{-2} , was reported in 2001. Sketch its molecular orbital energy diagram showing all of the atomic orbitals and the resulting molecular orbitals. You can ignore sp-mixing. Populate the MO diagram with the appropriate number of electrons. Label all of the molecular orbitals with labels such as σ_{2s} , etc.

(continued) How many unpaired electrons, if any, does the diazinide ion possess?
9. (9 pts) Sketch the molecular orbital energy diagram for carbon monoxide. Show all of the atomic orbitals and the resulting molecular orbitals. Again, you can ignore sp-
mixing. Populate the MO diagram with the appropriate number of electrons.

On your MO energy diagram for CO, sketch a picture of the various molecular orbitals (using the little balloon shapes, some shaded, some open) for each bonding and antibonding MO.

2-point bonus: In the book, you encountered numerous MO energy diagrams. Along the right-hand sides of several of these diagrams were funny looking spectra plotted vertically and used to indicate the approximate energies of the molecular orbitals created. What is the name of the spectroscopy that gives us this information?


Answers:

- 1. Atomic size: Darmstadtium would be larger than platinum. Its first ionization energy would be lower than platinum. Darmstadtium would an electron affinity that is less than that of platinum.
- 2. (a) krypton; (b) calcium; (c) zinc
- 3. Lithium, boron and oxygen. I did not count off if Li was not circled because the question could be interpreted to mean "among those listed." Lithium does, however, have a lower first ionization energy than helium, not shown.
- 4. aluminum; 5. K (recall demo in
- 5. K (recall demo in class); 6. (c) chalcophile
- 7. (a) Cl; (b) P; (c) V^{+5}
- 8. (a) $P(1s)^2(2s2p)^8(3s3p)^5$; $S = 2 \times 1 + 8 \times 0.85 + 4 \times 0.35 = 10.2$
 - (b) Ca $(1s)^2 (2s2p)^8 (3s3p)^8 (3d)^0 (4s4p)^2$; S = 10 x 1 + 8 x 0.85 + 1 * 0.35 = 17.15
 - (c) Cu $(1s)^2 (2s2p)^8 (3s3p)^8 (3d)^{10} (4s4p)^1$ (recall that copper's ground state is an exception); S = $18 \times 1 + 9 \times 0.35 = 21.15$
- 9. F $(1s)^2 (2s2p)^7$; S = 2 x 0.85 + 6 * 0.35 = 3.8; Z* = 9 3.8 = 5.2
- 10. (a) Arsenic [Ar] 4s² 3d¹⁰ 4p³; (b) Titanium [Ar] 4s² 3d²; (c) Mn⁺² [Ar] 4s⁰ 3d⁵
- 11. (a) NO₃- AB₃ and note that nitrogen must have 8 electrons! It cannot have 10 or 6. Your structure should have one double bond between N and O and the other two are single bonded; (b) PF₃O AB₄; (c) SF₄O AB₅ In both (b) and (c) you have a choice as to whether or not to double bond the oxygen or to "snap" in onto the lone pair. The latter is generally preferred due to Period 3's reluctance to form double bonds, even though the double-bonded version satisfies formal charge arguments better. I accepted either form because both predict the correct ABE formula.
- 12. (a) Sulfite in which all atoms obey the octet rule calls for three single-bonded oxygen atoms to sulfur which has the AB_3E geometry. Each oxygen has a formal charge of -1 and the sulfur has a formal charge of +1. (b) To modify the sketch so that formal charges are optimized, simply make one of the oxygen atoms double bonded to the sulfur, thus reducing the formal charge on sulfur from +1 to 0. Any further double-bonding of oxygen-to-sulfur would be inappropriate as the FC on sulfur would become negative.
- 13. (a) AsF_5 ; (b) $BrCl_3$; (c) SF_4
- 14. (a) FCl_3 ; (b) NF_5 ; (c) SeO_4

15. (a) SO_3 gas; (b) LiNO $_3$ is ionic therefore a solid; (c) t-butanol, $(CH_3)_3COH$ has hydrogen bonding and therefore a liquid despite its MM < 100; (d) NI $_3$ is a solid; (e) BN is a network covalent and therefore a solid; (f) the element osmium is a solid as are all metals except Hg; (g) TeH $_2$ (MM = 130 g/mol) is polar covalent and with a relatively low MM, so we predict probably a gas but maybe a liquid (actually, it is a gas at room temperature, bp = -2.2 °C; (h) carbon disulfide has a MM < 100 and is non-polar leading us to predict it is a gas. It is, however, a liquid with a bp = 46 °C. I accepted either gas or liquid for both (g) and (h)

16.

Object	Principle rotation axis (0.5 pt per box)	Other rotation axes (list) (0.5 pt per box)	σ _h mirror plane (0.5 pt per box)	How many σ _v mirror planes? (0.5 pt per box)	How many σ_d mirror planes (0.5 pt per box)	Point group (2 pts per box)
Flower	C_5	None	No	5	0	$\mathrm{C_{5v}}$
Octagon	C_8	$4~\mathrm{C}_2$ and $4~\mathrm{C}_2$ '	Yes	4	4	D _{8h}
Stool	C_3	None	No	3	0	$\mathrm{C}_{3\mathrm{v}}$
Pencil	$\mathrm{C_{inf}}$	none	No	infinity	0	$\mathrm{C}_{\mathrm{inf-v}}$

18. (9 pts) Looks much like that of dioxygen, O_2 . The diazinide ion possess two unpaired electrons.

19. See book and homework assignment;

2-point bonus: photoelectron spectroscopy