Inorganic Exam 1 Chm 451 23 September 2008

Name:

1	(5 nts) Periodic	trends	multiple	choice	Each	question	has	onlv	one	correct	answer
т.	(U DUS	, i erioaic	uenus	munipie	choice.	Each	question	mas	OHLY	OHE	COLLECT	answer.

1. (5 pts) Periodic	trenas muitipie	cnoice. Each que	estion has only one correct answer.
(a) Which eleme	ent of these has t	he largest first ic	nization energy?
A. Ga	B. Ge	C. As	
D. In	E. Sn	F. Sb	
(b) Which elem	ent of these has	the largest atomi	c radius?
A. Ga	B. Ge	C. As	
D. In	E. Sn	F. Sb	
(c) Which elem	ent of these has t	the most metallic	character?
A. Ga	B. Ge	C. As	
D. In	E. Sn	F. Sb	
(d) Which elem	ent of these has	the largest electr	on affinity?
A. Ga	B. Ge	C. As	•
D. In	E. Sn	F. Sb	
` - '		_	or the elements aluminum through argon. Label ad Ar. Be careful to include the jog(s) that occur.

3. (3 pts) Plot the relative energies of the first five subsequent ionization energies for scandium.

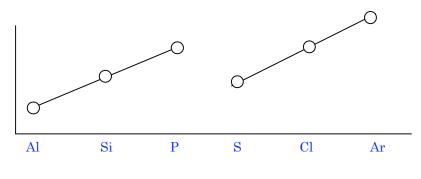
4. (3 pts) What is the reason why the effective nuclear charge increases from left to right across the periodic table? Be succinct!

5. (3 pts) We saw how potassium was more reactive towards water than was sodium and both were more reactive than lithium. Why was this so?

6. (6 pts) Calculate the Slater shielding, S, for								
(a) S								
4) 01.1								
(b) a 3d el	ectron on V							
7. (3 pts) Desc	ribe how Z _{eff} fo	r Ca ⁺² compar	es to tha	at for eler	mental ca	lcium?		
8. (12 pts) Ske	etch the Lewis d	ots structures	and dete	ermine tł	he ABE fo	ormulas fo	or the following	
species. AsCl ₃		BrF ₂ ⁺				SiH ₃ -		
3		D11 2				51113		
DCI +		7.7				170		
PCl ₄ ⁺		PF ₆ -				NO ₃ -		
9. (3 pts) In Po	Cl ₃ O, phosphor	us is the centra	al atom a	and the o	other four	atoms ar	e bonded to it.	
Predict th	e approximate (Cl-P-Cl angle.						
10. (4 pts) Wh	at geometries g	o with each of	these AI	BE formu	ılas?			
AB_3E				AB_2E				
AD E				A D				
$\mathrm{AB_4E_2}$				AB_6				
11. (5 pts) Circ	cle each of the f	ollowing comp	ounds th	at is exp	ected to b	oe polar:		
	SiCl_4	NF_3	SH	·2	OCl_2		${ m ClO}_2$	

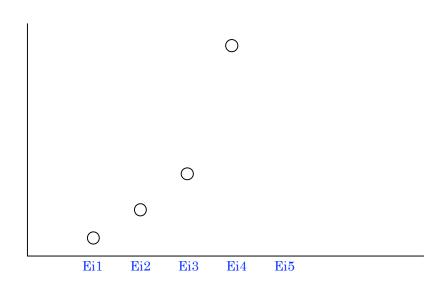
			-	n. That is, FO ₂ ⁻ downly the fluorite an	
13. (5 pts) Which o	f the following know	wn species is/are pa	aramagnetic?(Circle all that are.	
NO_2	${ m ClO}_2$	OCl_2	$\mathrm{C}(\mathrm{C}_6\mathrm{H}_5)_3$	NO_3	
_	nages to stay mono	-		ner $\mathrm{B_2H_6}$. $\mathrm{BF_3}$ does	s this by
	y each substance as te of matter, solid,		etwork covalent	or covalent molecu	lar.
C (diamond)					
brass					
HCl					
PCl_5					
1 <u>6. (12 pts)) Compl</u>			,		
	Primary rotation axis (e.g. C ₂)	List other rotation axes (e.g. C_2)	σ _h mirror plane?	How many σ_{v} mirror planes?	Inversion center?
BF ₃ (AB ₃)			Yes No		Yes No
NF ₃ (AB ₃ E)			Yes No		Yes No
OH ₂ (AB ₃ E ₂)			Yes No		Yes No
CO ₂ (AB ₂)			Yes No		Yes No
17. (7 pts) Matchin	g. Match the geome	etry of the compour	 nd with its poin	t group.	

 BF_3 (AB ₃)	A. D_{4h}
 $_{-}$ NF $_{3}$ (AB $_{3}$ E)	B. C_{2v}
 $OH_2 (AB_3E_2)$	C. O _h
 CO_2 (AB ₂)	D. C_{3v}
 SF_6 (AB ₆)	E. D_{3h}
 CH_4 (AB ₄)	$\operatorname{F.D}_{\infty_h}$
XeF_4 (AB_4E_2)	G. T _d


18. (a) (5 pts) Prepare a molecular orbital energy diagram for NO. The atomic orbitals for N are somewhat higher than those for O. We can ignore s-p mixing. The energies of the N and O s-orbitals are similar enough so that they interact, as do the three p-orbitals on N and O.

- (b) (2 pts) Predict the NO bond order.
- (c) (1 pts) How many unpaired electrons are present?
- (d) (1 pts) Is/are the unpaired electrons in a N-like MO or in a O-like MO?
- (e) (2 pts) What is the bond order for each of the related species:
 - (i) NO⁺
 - (ii) NO-

Answers:


1. (a) C, (b) D, (c) D, (d) B or C

2.

0

3.

- 4. The number of protons is increasing by one from one atom to the next, while the shielding provided by the additional electron is only 0.35. typically. Thus, in going from one type of atom to the next larger atom, the effective nuclear charge increases by 0.65.
- 5. Potassium's valence electron is the 4s which is higher in energy than sodium's 3s and lithium's 2s. Thus, it is easier to oxidize potassium than it is sodium. Overall, ease of oxidation is K > Na >
- 6. (a) sulfur: S: $(1s)^2 (2s2p)^8 (3s3p)^6$

$$S = 5 \times 0.35 + 8 \times 0.85 + 2 \times 1 = 10.55$$

(b) a 3d electron on vanadium: $(1s)^2 (2s2p)^8 (3s3p)^8 (3d)^3 (4s4p)^2$ $S = 2 \times 0.35 + 18 \times 1 = 18.70$

$$S = 2 \times 0.35 + 18 \times 1 = 18.70$$

7. $\mathrm{Ca^{+2}}$ has two fewer electrons than has Ca to contribute to shielding. Thus $\mathrm{Z_{eff}}$ greater for $\mathrm{Ca^{+2}}$

8.			
o.	C	D	
	u	J	٠.
		1	•

AsCl ₃ AB ₃ E	$BrF_2^+AB_2E_2$	SiH ₃ ⁻ AB ₃ E
$PCl_4^+AB_4$	PF_6 - AB_6	NO ₃ -AB ₃

9. The Cl-P-Cl angle is predicted to be slightly less than 109 degrees..

AB ₃ E trigonal pyramid	AB ₂ E bent
${ m AB}_4{ m E}_2$ square plane	AB ₆ octahedron

- 11. Polar: NF₃ SH₂ OCl₂ ClO₂
- 12. Without expanding the octet, the formal charge on fluorine is +1. Like all n = 2 elements, fluorine cannot expand its octet.
- 13. Paramagnetic: NO_2 ClO_2 $C(C_6H_5)_3$ NO_3
- 14. BF_3 has 3 resonance forms that have B and F double bonded. While this give F a FC of +1, it is spread out over three fluorines, so it isn't as bad. The all single bonded resonance form, with subvalent boron, is also important.

15.

υ.		
NH ₄ Cl	ionic	solid
C (diamond)	network covalent	solid
Brass	metallic	solid
HCl	covalent molecular	gas
PCl ₅	covalent molecular	liquid due to MM > 200 and non-polar

16. (12 pts)) Complete the following table:

Fam.	Primary rotation axis (e.g. C ₂)	List other rotation axes (e.g. C ₂)	σ _h mirror plane?	How many σ_v mirror planes?	Inversion center?
BF ₃ (AB ₃)	C_3	C_2	Yes	3	No
NF ₃ (AB ₃ E)	C_3		No	3	No
OH ₂ (AB ₃ E ₂)	C_2		No	2	No
CO ₂ (AB ₂)	C∞	C_2	Yes	8	Yes

17. E, D, B, F, C, G, A

18. (b) 2.5; (c) 1; (d) N-like; (e) (i) 3; (ii) 2