Chm 451 Exam 2 30 October 2013 Name:

This test has 100 points available. You may skip up to 10 points worth. Your score will be determined as 110 minus the sum of the number wrong + number skipped. Scores over 100 will stand as is. You can use your data sheets for the last 30 minutes 10:15 – 10:45. Plan your time! Exam ends promptly at 10:45.

1. Which ONE of the following salts would form acidic solutions in water?

A. NaC₂H₃O₂ B. NH₄Cl C. KBr

- E. LIOH F. Na₂CO₃
- 2 3. In class I reacted gaseous boron trifluoride and ammonia.
- 2. What sort of bond was formed between boron BF_3 and $\mathsf{NH}_3?$

A. ionic B. hydrogen bonding

- C. coordinate covalent D. covalent
- 3. The product obtained was a:
 - Circle one: solid, liquid, OR gas
- 4. The best hard acid among these listed:

Mg⁺² K⁺ Ag⁺ F⁻ Cl⁻ S⁻²

5. The best soft acid among these listed:

Mg⁺² K⁺ Ag⁺ F⁻ Cl⁻ S⁻²

6. The best hard base among these listed:

Mg⁺² K⁺ Ag⁺ F⁻ Cl⁻ S⁻²

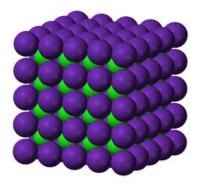
7. The best soft base among these listed:

Mg⁺² K⁺ Ag⁺ F⁻ Cl⁻ S⁻²

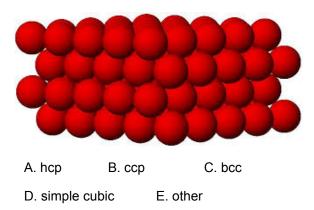
- 8. BrF₃ is an aprotic solvent that autodissociates slightly, like water does. Which of these represents the autodissociation of BrF₃?
 - A. $BrF_3 \leftarrow BrF_2^+ + F^-$
 - B. 2 BrF₃ \leftarrow BrF₂⁺ + BrF₄⁻
 - C. BrF₃ ← Br⁺³ + 3 F⁻
 - D. BrF₃ + H₂O BrF₂OH + HF
- 9. Which oxyacid has the largest Ka?

A.
$$H_3AsO_2$$
 B. H_3AsO_3 C. H_3AsO_4

- 10. What equilibrium explains how glacial acetic acid allows us to differentiate between the acid strengths of HCI and HBr (collectively represented as HX)?
 - A. HX + $HC_2H_3O_2$ $H_2C_2H_3O_2^+ + X^-$
 - B. $HX + HC_2H_3O_2 H_2X^+ + C_2H_3O_2^-$
 - C. $H_2C_2H_3O_2^+ + C_2H_3O_2^- 2 HC_2H_3O_2$

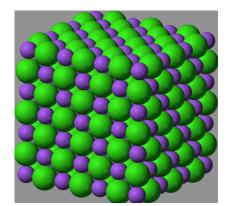

D. $HX + HC_2H_3O_2 \leftarrow C_2H_3O_2 + X + H_2$

- 11. Which two lattices types have the same packing efficiency?
 - A. bcc and fcc B. bcc and hcp
 - C. fcc and hcp D. simple and hcp
 - E. simple anc fcc
- 12 15. What are characteristics of lattices with low packing efficiency? Circle your choice for each.
- 12. low melting point or high melting point
- 13. generally soft or generally hard
- 14. low density or high density
- 15. large ionization energy or low ionization energy
- 16. In close-packed unit cells, the radius of the tetrahedral holes, $r_{tet} = 0.225r_{sphere}$, and the radius of octahedral holes, $r_{oct} = 0.414 r_{sphere}$. The ionic radius of Na⁺ is 95 pm and that of Br is 185 pm. The ratio of these radii, $r_{cation} / r_{anion} =$
 - 0.514. The Na⁺ ions occupy
 - A. all of the tetrahedral holes
 - B. half of the tetrahedral holes
 - C. all of the octahedral holes
 - D. half of the octahedral holes
 - E. all of the cubic holes
 - F. half of the cubic holes


17. Using the same answers as in the previous problem, what do you predict for MgS, for which the radius ratio is 0.35?

ABCDEF

18 – 19. Use this figure to answer the next two questions:


- 18. If the green and purple spheres represent the same atom, this lattice is:
 - A. hcp B. ccp C. bcc
 - D. simple cubic E. other
- 19. If the green and purple spheres represent different ions, this lattice is:
 - A. NaCl lattice B. CsCl lattice
 - C. rutile lattice D. wurtzite lattice
 - E. other
- 20. The lattice shown here is:

21. What is the coordination number for the cations and anions in NaCl?

A. 4 B. 6 C. 8 D. 12 E. other

22. Which equation is true regarding e, the length of the cell edge for NaCl, shown here. Note r_{-} = radius of Cl⁻ and r_{+} = radius of Na⁺.

A. e = r ₊ + r ₋	B. e = 2r_
	_

C. $e = 2r_{+} + 2r_{-}$ D. $e = 4 r / \sqrt{2}$

23. How many Na⁺ and Cl⁻ occupy each unit cell?

A. two of each	B. four Na ⁺ and two Cl ⁻

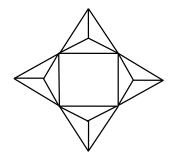
- C. four of each D. two Na⁺ and four Cl⁻
- 24. Suppose NaCl formed using the hcp unit cell rather than the fcc unit cell. How many Na⁺ and Cl⁻ would occupy each unit cell?
 - A. two of each B. four Na⁺ and two Cl⁻
 - C. four of each D. two Na⁺ and four Cl⁻
- 25. When would one predict an ionic substance uses the CsCl lattice?

A. when the cations are larger than the anions

- B. when the cations are smaller than the anions
- C. when the ions are similar in size
- D. when there is only one cation per anion
- 26. What is the ratio of space-filling spheres to octahedral holes to tetrahedral holes in the hcp lattice?

A. 1 : 1 : 2	B. 1 : 2 : 4
C. 2: 1 : 2	D. 1 : 1 : 4

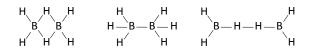
E. other


- 27 32. Predict the sign for each step in the formation of LiF via the Born-Haber cycle.
 - 27. Li(s) \longrightarrow Li(g) $\Delta H = + \text{ or } -$ 28. Li(g) \longrightarrow Li⁺(g) + e⁻ $\Delta H = + \text{ or } -$ 29. 1/2 F₂(g) \longrightarrow F(g) $\Delta H = + \text{ or } -$ 30. F(g) + e⁻ \longrightarrow F⁻(g) $\Delta H = + \text{ or } -$ 31. Li⁺(g) + F⁻(g) \longrightarrow LiF(s) $\Delta H = + \text{ or } -$ 32. Li(s) + 1/2 F₂(g) \longrightarrow LiF(s) $\Delta H_f = + \text{ or } -$
- 33. Which equation above corresponds to the lattice energy?

27	28	29	30	31	32
----	----	----	----	----	----

34. Ag₂Hgl₄ is a yellow solid featuring iodide ions in a cubic close packed array. The Ag⁺ and Hg⁺² ions occupy only tetrahedral holes. What fraction of the tetrahedral holes are occupied?

A. 1/2	B. 1/4	C. 1/8
D. 3/8	E. all	F. other


- 35 38. True/False for the Bravis lattice types:
- 35. T F The tetragonal unit cell has all angles equal to 90°.
- 36. T F The monoclinic unit cell has three unique angles, none of which equals 90^o.
- 37. T F The triclinic unit cell requires the edge lengths to be equal, a = b = c.
- 38. T F The rhomohedral unit cell requires the edge lengths to be equal, a = b = c.
- 39. What is the charge on this silicate anion?

- A. +2 B. -2 C. +4 D. -4
- E. +6 F. -6 G. other

- 40 43. Answer these questions about an n-type semiconductor.
- 40. An n-type semiconductor could be made by doping silicon with traces of Ga or As. Circle one.
- 41. An n-type semiconductor has
 - A. some electrons in antibonding orbitals
 - B. some empty bonding orbitals
- 42. When an n-type semiconductor is joined to a ptype semiconductor, the n-type is slightly higher or lower in energy than the p-type. Circle one.
- 43. In a diode, electrons can flow from n-type to ptype or from p-type to n-type. Circle one.
- 44. Sodium peroxide reacts with water forming:
 - A. $Na_2O(aq) + H_2(g)$ B. $NaOH(aq) + O_2(g)$
 - C. NaOH(aq) + $H_2O_2(aq)$ D. NaOH(aq) + $H_2(g)$
- 45. Three of the alkali metals form a superoxide salt when burned in oxygen. Which are they?
 - A. Li, Na, K B. Na, K, Rb C. K, Rb, Cs
- 46. The alkaline metal oxides all form extremely stable lattices. What lattice type do they utilize?
- A. NaCl lattice B. CsCl lattice C. fluorite lattice
- D. rutile lattice E. wurtzite lattice
- 47. Which ONE statement about saline hydrides is not true?
 - A. Calcium hydride reacts with water to produce $H_2(g)$
 - B. Saline hydrides are solids.
 - C. Saline hydrides are air and moisture sensitive.
 - D. Sodium hydride dissolves in acid.
- 48. Which statement about the alkali metals is NOT true?
 - A. Several have densities less than that of water.
 - B. Several have melting points less than 100 °C.
 - C. Several exhibit the fcc lattice in the solid phase.
 - D. All have electron configurations ending in ns¹.

49. Circle the correct structure of diborane:

50. What is the formula for boric acid?

A. B(OH) ₃	В. Н ₂ ВО ₄

- C. HBO₄ D. HB(OH)₃
- 51. What accounts for the acidic nature of boric acid?
 - A. All compounds with a hydrogen in their formula are acidic.
 - B. The OH group from one boric acid molecule deprotonates another boric acid
 - C. Boric acid autodissociates.
 - D. The boron atom is a Lewis acid
- 52. Aluminum metal reacts with both acids and bases to produce hydrogen gas:

2 Al(s) + 6 H₃O⁺(aq) + 6 H₂O → 2 [Al(OH₂)₆]³⁺(aq) + 3 H₂(g)

2 Al(s) + 2 OH⁻(aq) + 6 H₂O →

2 [Al(OH)₄]⁻(aq) + 3 H₂(g)

- Which ONE statement is true?
- A. $[AI(OH)_4]^-(aq)$ is an acidic ion.
- B. $[Al(OH)_4]^-(aq) + [Al(OH_2)_6]^{3+}(aq)$ would react to form Al.
- C. $[Al(OH_2)_6]^{3+}(aq)$ is a Lewis acid
- D. Both reactions (from above) are reversible.
- 53. The graphite allotropic form of carbon exhibits sp² hybridized carbons and the diamond form exhibits sp³ carbons. What hybridization is exhibited by carbons in buckminsterfullerene?

A. sp B. sp^2 C. sp^3

- D. Half sp² and half sp³
- 54. Allotropes are known for all of these elements except
 - A. P B. S C. Sn D. Mg

- 55. What accounts for the "inert" chemical reactivity of N₂(g)?
 - A. Nitrogen does not have available d-orbitals.
 - B. Nitrogen's triple bond is thermodynamically stable.
 - C. Nitrogen has a stable half-filled electron configuration 2p³.
 - D. Nitrogen's extremely short bond makes the molecule virtually spherical.
- PCI₅(s) is actually an ionic substance, consisting of
 - A. PCI_4^+ and CI^- B. PCI_4^- and PCI_6^+
 - C. P^{+5} and five Cl⁻ D. PCl_4^+ and PCl_6^-
- 57. The ions/compounds O₂⁺, O₂, O₂⁻, and O₂⁻² are respectively
 - A. paramagnetic, paramagnetic, paramagnetic, and paramagnetic.
 - B. paramagnetic, diamagnetic, paramagnetic, and diamagnetic.
 - C. diamagnetic, paramagnetic, diamagnetic, and diamagnetic.
 - D. paramagnetic, paramagnetic, paramagnetic, and diamagnetic.
- 58. Fluorine forms some of the strongest bonds in chemistry, often with bond strengths greater than 500 kJ/mol. Which one of these bonds is NOT strong?

A. F-F	B. C-F	C. Si-F
D. H-F	E. B-F	F. P-F

59. Diborane bursts into flames upon exposure to air. The reaction (all unbalanced) is:

A. $B_2H_6 + O_2 \rightarrow B_2O_3 + H_2$

B. B₂H₆ + O₂ → B(OH)₃ + H₂

C. $B_2H_6 + O_2 \rightarrow B + H_2O$

D. $B_2H_6 + O_2 \rightarrow B_2O_3 + H_2O_3$

- 60. In the Ostwald process for producing nitric acid, ammonia is burned in air producing NO₂(g). This gas is then reacted with water to produce nitric acid according to:
 - A. 2 NO₂(g) + 2 H₂O(g) \rightarrow 2 HNO₃(aq) + H₂(g)
 - B. 2 NO₂(g) + 2 H₂O(g) → 2 HNO₃(aq) + N₂H₄(g)
 - C. 3 NO₂(g) + H₂O(g) → 2 HNO₃(aq) + NO(g)
 - D. 2 NO₂(g) + H₂O(g) → 2 HNO₃(aq) + H₂O₂(g)
- 61. Which of these substances has the most covalent character?
 - A. LIF B. LII C. LICH₃ D. CaC₂
- 62. What other gas, besides O₂, supports combustion?

A. NO₂ B. N₂O C. N₂ D. NH₃

63. Which of these is NOT a potential ligand?

A. NH_4^+ B. NH_3 C. NH_2^- D. N_2

- 64 65. The lanthanide contraction accounts for why third row metals have a
- 64. larger/smaller radius than expected based on the trend for first and second row metals. Circle one.
- 65. larger/smaller first ionization energy than expected based on the trend for first and second row metals. Circle your choice.
- 66. How many diastereomers are possible for tetrahedral ZnCl₂(NH₃)₂?
 - A. one B. two C. three D. other
- 67. How many diastereomers are possible for square planar PdCl₂(NH₃)₂?
 - A. one B. two C. three D. other
- 68 70. The next three questions pertain to the compound [Cr(OH₂)₃(NH₃)₃](NO₃)₃.
- 68. What is the coordination number for chromium?

A. two B. four C. six D. nine

69. What is the oxidation state of chromium?

A. +2 B. +3 C. +6 D. other

70. How many diastereomers are possible?

A. one B. two C. three D. four

- 71 74. The next three questions pertain to the compound [Rh(en)₂Cl₂](NO₃). The "en" is ethylenediamine, NH₂CH₂CH₂NH₂.
- 71. What is the coordination number for rhodium?

A. two B. four C. six D. seven

72. What is the oxidation state of rhodium?

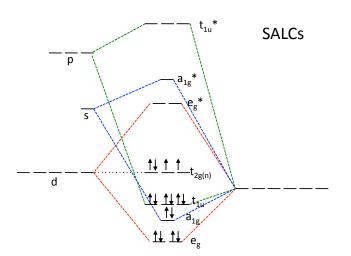
A. +2 B. +3 C. +6 D. other

73. How many diastereomers are possible?

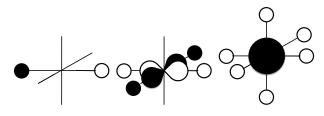
A. one B. two C. three D. four

- 74. Is the complex chiral? Circle Yes or No
- 75 77. Circle the member of each pair most likely to be low spin.
- 75. $MnCl_{6}^{-4}$ or $Mn(CN)_{6}^{-4}$
- 76. Fe(OH₂)₆⁺² or Ru(OH₂)₆⁺²
- 77. $Fe(NH_3)_6^{+2}$ or $Fe(NH_3)_6^{+3}$
- 78. For octahedral complexes, what d-electron configurations are either high-spin or low spin?

A. $d^4 - d^7$ B. $d^4 - d^8$ C. $d^0 - d^{10}$ D. $d^4 - d^{10}$


- 79. Are tetrahedral complexes high or low spin?
 - A. always high spin B. always low spin
 - C. both possible D. low spin possible for $d^3 d^7$
- 80. Which of these is often associated with square planar complexes
 - A. high-spin d^8 B. diamagnetic d^8
 - C. low-spin d^6 D. early transition metals
- 81. Which d-orbital would be highest in energy in a square planar environment according to crystal field energy?

A. d_{XY} B. d_{XZ} C. d_{YZ} D. $d_{X^2-Y^2}$ E. d_{Z^2}


82. Which two d-orbitals would be lowest in energy in a square planar environment according to crystal field energy?

A. $d_{XY} \& d_{X^2-Y^2}$ B. $d_{XZ} \& d_{YZ}$ C. $d_{X^2-Y^2} \& d_{Z^2}$

83 – 100. Refer to this MO diagram to answer most of the remaining questions.

83 – 85. Consider these diagrams:

83. What does the first (left) diagram represent?

A. a t _{1u} SALC	B. an e _g SALC

C. an a _{1g} SALC	D. a t _{1u} MO

- E. an e_g MO F. an a_{1g} MO
- 84. What does the middle diagram represent?

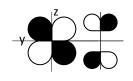
O. all alg SALC D . a light with	C. an a _{1q} :	SALC	D. a t ₁₁	ј МО
------------------------------------	-------------------------	------	----------------------	------

- E. an eq MO F. an a_{1q} MO
- 85. What does the third (right) diagram represent?
 - A. an a_{1g} bonding MO B. an a_{1g} antibonding MO
 - C. an e_g bonding MO D. an e_g antibonding MO
 - E. a t_{1u} bonding MO F. a t_{1u} antibonding MO
- 86 87. A coordination chemist would call this complex
- 86. Circle one: low or high spin
- 87. Circle one: d⁰ 1 2 3 4 5 6 7 8 9 10

88. The value referred to as Δ_0 is the difference in energy between the MOs labeled:

A. t_{1u} and e_g	B. t_{2g} and e_g^*
C. t _{1u} and e _g *	D. a_{1g} and t_{1u}^*

- 89. Does this diagram represent a system with πback bonding? Circle: Yes or No
- 90. Is the complex paramagnetic? Circle: Yes or No
- 91 95. What orbitals constitute the t_{2g}(n)? More than one!


A. d_{XY} B. d_{XZ} C. d_{YZ} D. $d_{X^2-Y^2}$ E. d_{Z^2}

- 96 99. Octahedral transition metal complexes can have 12 22 electrons, depending on factors.
- 96. Why is 12 the minimum number of electrons?
 - A. each ligand contributes 2 electrons
 - B. there are always 12 core electrons
 - C. the transition metals lose their s-electrons first
 - D. π -back bonding requires a minimum of 12 electrons.

97. Which member is most likely to allow over 18 electrons (Scenario 1)?

 MF_6^{-4} or $M(CN)_6^{-4}$

98. This figure shows the interactions involved in π -back bonding. What is a possible identity of the ligand?

A. PF₃ B. CN⁻ C. C₂F₄ D. C₂H₆

99. Which complex is most likely to participate in π -back bonding (Scenario 3)?

 $Fe(NH_3)6^{+2}$ or $Fe(CN)6^{-4}$

100. Referring back to the MO diagram, what molecular orbital changes in energy the most when π -back bonding occurs?

A. a _{1g}	B. eg	C. t _{1u}	D. t _{2g}
E. a _{1g} *	F. eg*	G. t _{1u} *	

An	swers:	31.	-	63.	А	98.	С
1.	В	32.	-	64.	smaller	99.	Fe(CN)6 ⁻⁴
2.	С	33.	31	65.	larger	100.	D
3.	solid	34.	D	66.	А		
4.	Mg ⁺²	35.	Т	67.	В		
5.	Ag ⁺	36.	F	68.	С		
6.	F-	37.	F	69.	В		
7.	S ⁻²	38.	Т	70.	В		
8.	В	39.	G	71.	С		
9.	C	40.	As	72.	В		
10.	A	41.	A	73.	В		
11.	С	42.	lower	74.	Yes		
12.	low	43.	n-type	75.	Mn(CN)6 ⁻⁴		
13.	soft	44.	C (or B)	76.	Ru(OH ₂)6 ⁺²		
14.	low	45.	С	77.	Fe(NH ₃)6 ⁺³		
15.	low	46.	A	78.	А		
16.	С	47.	D	79.	A		
17.	В	48.	C	80.	В		
18.	С	49.	left figure	81.	D		
19.	В	50.	A	82.	В		
20.	А	51.	D	83.	А		
21.	В	52.	C B	84.	E		
22.	С	53. 54.		85.	В		
23.	С	54. 55.	Mg B	86.	low		
24.	А	55. 56.	D	87.	4		
25.	С	50. 57.	D	88.	В		
26.	А	58.	A	89.	No		
27.	+	59.	D	90.	Yes		
28.	+	60.	С	91-95	A, B, C circled		
29.	+	61.	C	96.	А		
30.	-	62.	В	97.	MF ₆ -4		
		52.	5				